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The United Kingdom (UK) has thus far been consid-
ered to be free from tick-borne encephalitis (TBE), 
yet in July 2019, a German infant developed serologi-
cally diagnosed TBE following a tick bite in southern 
England. This first report of a probable human case 
together with recent findings of TBE virus in ticks 
in foci in England suggest that TBE may be acquired 
in parts of England and should be considered in 
patients with aetiologically-unexplained neurological 
manifestations.

End-July 2019, a case of tick-borne encephalitis (TBE) 
in a 3-month-old infant was notified to the German 
mandatory surveillance system for infectious diseases. 
The patient’s family, resident in a TBE-non-endemic 
region in Germany, had holidayed in England during the 
incubation time. We present the case report based on 
German surveillance data, information provided by the 
family, laboratory reports and two hospital discharge 
summaries, and describe the public health response.

Case report
A German family including a 3-month-old infant spent 
their holiday in southern England from 1 to 15 July 2019 
(Figure 1). The mother was not vaccinated against nor 
reported past TBE infection. On 6 July, the family pic-
nicked near Woodgreen in the New Forest National 
Park (Figure 2), where the child laid on a blanket on 
the grass. An unengorged tick, attached to the infant’s 
neck, was discovered on 7 July. The tick was removed 
incompletely, using tweezers, and the wound was dis-
infected. The remaining tick fragments detached 2 
days later.

The previously healthy infant developed fever on 17 
July, 11 days after the tick bite. Medical history was 
unremarkable; the infant had thus far received one 

hexavalent routine childhood vaccination. Subtracting 
the maximum incubation period of 28 days [1] from 
symptom onset, renders 19 June as the earliest pos-
sible infection date. The infant reportedly did not 
visit any other location where a tick bite could have 
occurred except their home area in Hesse, Germany 
which is non-endemic for TBE. Each bout of fever 
was accompanied by focal seizures, lasting ca 1 min. 
Hospitalisation occurred on 17 July, prompting a series 
of diagnostic tests (Table). Based on elevated cerebro-
spinal fluid markers (Table), meningitis was diagnosed 
and the infant was treated with intravenous cefotax-
ime, ampicillin and aciclovir. The focal seizures became 
generalised lasting up to 5 min and were treated with 
anticonvulsants (clonazepam, midazolam, leveti-
racetam). The infant was transferred to a specialised 
hospital on 20 July. Magnetic resonance imaging and 
repeated electroencephalograms revealed pathological 
results (Table). Having excluded numerous neurotropic 
pathogens, TBEV-specific serology tested positive for 
IgM and IgG (Table) and meningoencephalitis because 
of TBEV infection was diagnosed by the treating physi-
cians. The infant was discharged 15 days after admis-
sion with mild remaining neurological symptoms, which 
had subsided by the check-up 6 weeks later.

Public health response
Upon receiving the notification on 25 July, the Robert 
Koch Institute asked the patient’s family for their 
detailed travel history in England. One week later, the 
event was reported through the European Commission 
Early Warning and Response System (EWRS) selective 
exchange to inform United Kingdom (UK) colleagues.

Following TBEV detection in ticks in Thetford Forest in 
2019, from samples collected February 2018 to January 
2019 [2], enhanced clinical surveillance activities were 
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Figure 1
Timeline of infection, disease progression and public health response to the probable tick-borne encephalitis case in an 
infant, Germany, July–August 2019

25 26 27 28 29 30 31

Maximum incubation time 19 Jun to 15 Jul

17 Jul
Symptom onset

Hospitalisation 17 Jul to 01 Aug

06 Jul
Picnic

07 Jul
Tick bite noticed

Holiday in England 01 to 15 Jul

25 Jul
Case notification

23 Jul
Positive TBE test 

Calendar week 2019

02 Aug
EWRS message

EWRS: Early Warning and Response System; TBE: tick-borne encephalitis.

Figure 2
Map of the likely place of infection of tick-borne encephalitis case in a German infant, Woodgreen, New Forest National 
Park, England, 2019
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Southampton
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TBEV: tick-borne encephalitis virus; UA: unitary authority.

Source: Ordnance Survey and National Statistics data for geographical and administrative boundaries.
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Table
Diagnostic tests performed on the probable case of tick-borne encephalitis (TBE) during hospitalisation, Germany, 
July–August 2019

Date (2019) Test (sample type/assay) Result Interpretation

17–19 Jula CSF diagnostics

1,000 cells (norm: 0–5) 
 

(40% granulocytes, 60% lymphocytes) 
 

1.5 g protein 
 

59 mg/dL glucose level (norm: 40–80)

Inflammation

17–19 Jula Blood culture Negative Normal
17–19 Jula CSF culture Negative Normal

17–19 Jula

Multiplex PCR (CSF) for: 
 

-Escherichia coli, 
 

-Haemophilus influenzae, 
 

-Listeria monocytogenes, 
 

-Neisseria meningitidis, 
 

-Streptococcus, 
 

-Cytomegalovirus, 
 

-Enterovirus, 
 

-Herpes Simplex Virus 1 and 2, 
 

-Human herpesvirus 6, 
 

-Human parechovirus, 
 

-Varicella zoster virus, 
 

-Cryptococcus

Negative Normal

17–19 Jula Enterovirus (stool) Negative Normal
20 Jul MRSA and MRGN screening Negative Normal
23 Jul TBEV-IgG (serum)b 10.3 AE/mL Positive (cut-off: 0.241)
23 Jul TBEV-IgM (serum)b 12.5 index Positive (cut-off: 0.234)

25 Jul Borrelia burgdorferi (IgG-ELISA) < 5.2 U/mL Negative (cut-off: < 7 U/
mL)

22 Jul and 25 Jul Electroencephalography

Slowed activity in right hemisphere; 
 

Epileptic activity in right temporal/central and left 
occipital areas.

Pathological

01 Aug Magnetic resonance imaging
Leptomeningeal enhancement. 

 
No sign of parenchymal defect or brain abscess.

Pathological

CSF: cerebrospinal fluid; MDRGN: multidrug resistant Gram-negative bacteria; MRSA: methicillin-resistant Staphylococcus aureus; TBEV: tick-
borne encephalitis virus.

a Performed during the first hospital stay. Exact test dates were not given in discharge summary.
b The test kit used was Enzygnost Anti-TBE virus (IgG, IgM) (Siemens, Marburg, Germany) which determines a specific cut-off for each run 

(alpha-method).
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underway in the east of England, focusing on encepha-
litis cases without confirmed cause [3]. Following the 
EWRS message, these activities were extended to areas 
surrounding the New Forest National Park. TBEV sero-
prevalence studies in groups at high risk of tick bites 
and in the general population are also being imple-
mented in both areas. Tick surveillance was already 
underway around the New Forest National Park follow-
ing previous findings [2], but additional tick surveys 
were conducted around Woodgreen on 8 and 23 August 
2019. Only 135 ticks (70 nymphs, 25 adult males, 40 
adult females) were collected, likely because the peak 
tick questing season had already passed. Pools of 10 
nymphs, five adult males or five adult females were 
homogenised for RNA extraction and RT-PCR analy-
sis [4]. No TBEV or other TBEV-serocomplex RNA was 
detected.

Discussion
We report a human TBE case, believed to be the first 
acquired in the UK. Diagnosis was by serology only, 
which can be regarded as a limitation. No reserve sam-
ple was available for additional testing (TBE-specific 
PCR or neutralization assay [5]). Because of the lack of 
therapeutic consequences, no follow-up blood sample 
was drawn from the infant; therefore it was not pos-
sible to test for a rise in IgG titre in paired samples [5].
Several pieces of evidence support the likelihood that 
this is a true TBE case. First, the tick bite, the clinical 
symptoms and the incubation time of 11 days, close to 
the median of 8 days [5], fit the typical picture of TBEV-
infection. This patient did not have the biphasic course 
of TBE, which is observed in 72–87% of TBE cases [5]. 
Second, as the infant resides in a TBE-non-endemic 
area in Germany it is highly unlikely that a second tick 
bite occurred there within the incubation time, went 
unnoticed and caused the infection. The likelihood of 
the infection having occurred near Woodgreen is far 
higher given the known tick bite. Third, the extensive 
array of differential diagnostics ruled out numerous 
other neurotrophic pathogens. Fourth, the TBE serolog-
ical results were far above the cut-offs. Finally, as the 
mother did not report any past TBE vaccination or infec-
tion, it is unlikely that maternal TBE antibody transfer 
occurred, and certainly not with such high titres.

In 2019, TBEV was reported for the first time in ticks 
in discrete foci in Thetford Forest, England [2], but the 
pathogenicity is unknown and no other human cases 
have yet been identified in the UK. Tick surveys around 
Woodgreen did not detect any TBEV, however, it must 
be noted that only a small tick sample was collected. 
Yet, a pool of questing ticks sampled previously, on the 
Hampshire/Dorset border in June 2019, tested TBEV-
positive, suggesting that TBEV has established itself 
in the UK [6]. Follow-up tick surveys will be conducted 
during spring 2020.

Although the clinical presentation and serology are 
consistent with the European TBE case definition [7], 
this interpretation has to be considered in light of the 

natural endemicity of Louping ill virus (LIV) in the UK. 
Until recently, LIV was believed to be the only virus 
of the TBE-serocomplex endemic in the UK [8]. Like 
TBEV, LIV is also transmitted by  Ixodes ricinus  ticks 
and mainly occurs in sheep, cattle and red grouse in 
upland grazing areas of the British Isles [8]. LIV infects 
humans in rare cases and cross-reacts with TBEV sero-
logically. In the absence of an isolate or sequence data 
from acute phase samples, the exact aetiology in the 
case presented here remains uncertain. However, LIV 
is most prevalent in upland areas, which are located 
mostly in the north and west of the UK, and less than 
50 human clinical LIV cases have been reported since 
1934 [8], with one in England reported as recently as 
2011 [9]. The likelihood of LIV thus is low in our case 
and we believe that it is a true TBEV-infection.

This first probable human TBEV-infection in England 
and the detection of TBEV in ticks stand in accordance 
with the patchy spread of TBEV to new areas observed 
in parts of Europe. In Germany, the number of TBE-
endemic districts increased from 129 in 2007 to 161 
in 2019 [10]. The first TBE cases from the Netherlands 
were reported in 2016 [11,12]; and a new focus was 
recently discovered in Denmark following three human 
TBE cases in summer 2019 [13]. TBEV can spread to 
new areas through mammalian hosts or migratory birds 
infested with TBEV-carrying ticks [14]. This may either 
lead to sporadic infections, or sometimes to the estab-
lishment of new foci, if local climatic conditions are 
favourable to the transmission cycles between ticks 
and their rodent hosts [5].

In England, the public health authorities currently 
assess the risk of TBEV infection as very low for the 
general population and low for those who may be bit-
ten by ticks in areas where infected ticks are located 
[15]. Seroprevalence studies in groups at high risk of 
tick bites and in the general population, tick sampling 
and enhanced surveillance of human encephalitis 
cases without confirmed cause are underway to bet-
ter understand the human infection risk in areas where 
TBEV was detected in ticks or wildlife. Public Health 
England continues to promote tick awareness for those 
spending time outdoors. The public health risks from 
TBEV in England will be dynamically reviewed as new 
findings come to light.
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The presence of tick-borne encephalitis virus (TBEV) 
was detected in a questing tick pool in southern 
England in September 2019. Hitherto, TBEV had only 
been detected in a limited area in eastern England. 
This southern English viral genome sequence is dis-
tinct from TBEV-UK, being most similar to TBEV-NL. 
The new location of TBEV presence highlights that the 
diagnosis of tick-borne encephalitis should be con-
sidered in encephalitic patients in areas of the United 
Kingdom outside eastern England.

The geographical spread of tick-borne encephalitis virus 
(TBEV) is expanding in Europe [1]. In the Netherlands, 
the first human cases of TBE were recorded in 2016 [1]. 
In the UK, TBEV was detected in ticks removed from 
deer in the Thetford Forest area of East Anglia in east-
ern England in May 2019 [2,3]. Here we report findings 
of further investigations in Hampshire and its border-
ing areas in southern England.

Detection of tick-borne encephalitis virus 
using deer as sentinels
 
TBEV is a member of the flavivirus family, causing tick-
borne encephalitis (TBE), a neurologic encephalitic 
disease of humans. Five subtypes of TBEV are known: 
European (TBEV-Eu), Far Eastern (TBEV-FE), Siberian 
(TBEV-Sib), Baikalian (TBEV-Blk) and Himalayan 
(TBEV-Him) [4]. Ixodes ricinus is the main tick vector of 
TBEV-Eu, the predominant subtype in western Europe 
[5]. Louping ill virus (LIV), vectored by the same tick 
species, is a member of the TBEV serocomplex that is 
endemic in areas of the UK where it causes disease in 
sheep, and on rare occasions, also in humans [6]. The 
close genetic homology between LIV and TBEV results 

in cross-reactivity in standard serological assays, 
therefore the detection of viral nucleic acid is neces-
sary to differentiate between the two viruses.

Between February 2018 and January 2019, 1,309 deer 
serum samples were collected from culled deer in 
England and Scotland as part of a research study; 4% 
of samples were ELISA-positive for the TBEV serocom-
plex [2]. Our seroprevalence data highlighted two key 
geographic areas of interest (Figure 1) that showed 
evidence of flavivirus seropositivity in deer. Notably, 
these areas, Thetford Forest on the Norfolk/Suffolk 
border in eastern England and Hampshire in southern 
England, have not reported LIV in livestock [7,8]. This 
raised suspicion that another flavivirus may be present 
and follow-up investigations were conducted.

Questing tick sampling
Questing tick surveys were conducted at four sites 
during July and August 2018 (Table): (i) one on the 
Hampshire/Dorset border (site 1A) (ii) two in Hampshire 
(sites 2 and 3), and (iii) one on the Hampshire/Wiltshire 
border (site 4). The four sites were selected as areas 
where at least one seropositive deer was previously 
identified. Additional sampling was conducted on site 
1 during June 2019 because this location had the high-
est concentration of seropositive deer (50%) within 
Hampshire and its bordering counties in the previous 
year. Three localities were surveyed at site 1 (1A, 1B 
and 1C), where 915 ticks were collected and tested dur-
ing 2018 and 2,155 in 2019.

Detection of viral RNA
During September 2019, after all tick samples had 
been collected, ticks were morphologically identified 
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Figure 1
Number of deer samples tested for exposure to tick-borne encephalitis virus serocomplexa and relative percentage of 
positives, eastern, southern and central England, February 2018–January 2019
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a Commercial TBEV ELISA was used to determine if samples were positive for antibodies to TBEV serocomplex [2].

Table
Number of questing ticks tested by site, Hampshire and its borders, England, United Kingdom, 2018 and 2019

Month and year Site Area Nymphs (n) Adult males (n) Adult females (n) Total ticks (n)

July and August 2018

1A Hampshire/Dorset border 420 25 35 480
2 Hampshire 160 10 30 200
3 Hampshire 100 15 20 135
4 Hampshire/Wiltshire border 90 5 5 100

June 2019
1A Hampshire/Dorset border 870 100 110 1,080
1B Hampshire/Dorset border 430 65 80 575
1C Hampshire/Dorset border 340 75 85 500
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as  Ixodes ricinus  [9] and grouped into pools of 10 
nymphs or 5 adult males or 5 adult females. Pooled 
ticks were homogenised in 300 µl buffer RLT in MK28-R 
Precellys tissue homogenising tubes using a Precellys 
24 homogeniser (Bertin, Montigny-le-Bretonneux, 
France) [2]. Samples were then passed through a 
QIAshredder (Qiagen, Hilden, Germany) and extracted 
using the BioSprint 96 One-For-All Vet Kit (Qiagen) [2]. 
All tick pools were tested with the LIV/TBEV real-time 
RT-PCR assay developed by Schwaiger and Cassinotti 
[10]. RNA was amplified in 20 µL real-time RT-PCR 
mix containing 0.8 µL Invitrogen SuperScript III with 
Platinum Taq Mix (ThermoFisher, Waltham, United 
States), 10 µL Invitrogen 2X Reaction Mix, 1.6 µL of 
50 mM MgSO4, 1 µL of 1 µM forward primer (F-TBE 1), 
1 µL of 18 µM reverse primer (R-TBE 1), 0.2 µL of 25 µM 
probe (TBE-Probe WT), 5 µL template and 0.4 µL molec-
ular-grade water. One positive pool of a total of 373 
pools tested, was detected in an adult female group (Ct 
16.12), collected from site 1B on the Hampshire/Dorset 
border. The minimum infection rate of ticks infected 
with TBEV in site 1B was estimated as 0.17% [11].

Genome sequencing and phylogenetic 
analysis
The one pool positive for TBEV RNA was sequenced 
metagenomically using the Oxford Nanopore GridION 
[12] and the complete TBEV coding sequence was 
obtained: TBEV-UK Hampshire, GenBank accession 
number MN661145. Data was compiled with a range of 
other published TBEV genomes circulating in Europe, 
together with reference genomes from other TBEV sub-
types to infer the evolutionary history. Figure 2 shows 
this phylogenetic relationship and indicates that 
TBEV-UK Hampshire is most closely related to TBEV-NL 
(LC171402.1), a strain of TBEV detected in ticks in the 
Netherlands in 2017 [3]. When compared with the 
TBEV-NL strain, TBEV-UK2 Hampshire contains 49 sin-
gle nt polymorphisms leading to 12 amino acid substi-
tutions within the coding sequence.

Discussion and conclusion
Our findings indicate that TBEV prevalence in ticks 
is not limited to the Thetford Forest area in eastern 
England, but also includes the Hampshire/Dorset 

Figure 2
Phylogenetic relationship of contemporary strains of tick-borne encephalitis virus (TBEV) and TBEV-UK Hampshire, 
England, United Kingdom, 2019
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border in southern England. The viral genome sequence 
obtained from ticks in southern England is most similar 
to a virus identified in 2017 in the Netherlands [3] and 
is distinct from the TBEV-UK discovered in the Thetford 
Forest area in May 2019 [2]. The identification of two 
distinct TBEV-Eu genomes in the UK provides compel-
ling evidence of two separate importation events into 
the UK. Birds such as thrushes transport large num-
bers of ticks over great distances during autumn migra-
tion, when many travel to the UK from TBEV-endemic 
areas in northern and western Europe, including the 
Netherlands [13,14]. Factoring bird migration routes, 
the locality of the TBEV-UK Hampshire genome detec-
tion in southern England and its close homology to 
the Netherlands genome suggests that importation 
of TBEV-UK Hampshire to the UK may have occurred 
through the transport of infected ticks carried on 
migratory birds.

Additionally, the presence of TBEV in questing ticks 
indicates an established enzootic cycle involving ticks 
and other wildlife hosts, supporting the hypothesis 
that TBEV is established in the UK and is being main-
tained in enzootic cycles.

The estimated prevalence of 0.17% in this identified 
focus is relatively low when compared with some other 
reports from mainland Europe [15]. As TBEV foci com-
prise of defined boundaries, a possible explanation 
could be that the centre of this focus was not detected 
on this sampling occasion [16]. Follow-up investiga-
tions will be conducted to identify the exact location 
and boundaries of the endemic focus.

The risk of TBEV to the general population in the UK 
is currently assessed to be very low [17], and there 
have been no autochthonous confirmed cases of TBE 
in the UK to date. However, a probable case diagnosed 
through serology alone has been traced back to a tick 
bite received at a location in Hampshire close to where 
the TBEV-positive tick pool was collected [18]. These 
data reinforce the need to consider TBEV infection as 
a potential diagnosis in encephalitis patients, particu-
larly those with history of tick bite. However, confirma-
tion of TBE in the UK is complicated by the circulation 
of LIV, which is cross-reactive in standard serological 
tests. Further work is required to identify risk areas in 
the UK where climatic and ecological conditions may 
support the maintenance of TBEV.
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During summer 2019, three patients residing by 
Tisvilde Hegn, Denmark were hospitalised with tick-
borne encephalitis (TBE) after tick bites. A new TBE 
virus (TBEV) micro-focus was identified in tick nymphs 
collected around a playground in Tisvilde Hegn forest. 
Estimated TBEV prevalence was 8%, higher than in 
endemic areas around Europe. Whole genome sequenc-
ing showed clustering to a TBEV strain from Norway. 
This is the second time TBEV is found in  Ixodes rici-
nus outside Bornholm, Denmark.

Tick-borne encephalitis virus (TBEV), a member of the 
family Flaviviridae, genus flavivirus, causes tick-borne 
encephalitis (TBE). In Denmark, TBE is endemic only 
on the island Bornholm, with an incidence of 4 per 
100,000 inhabitants per year [1,2]. Here we report three 
clinical cases of TBE in patients hospitalised within a 
month and all residing at the boundary of the same for-
est, Tisvilde Hegn, in Northern Zealand.

Clinical cases and virology analysis

Case 1
Early July 2019, a man in his late 50s, was hospital-
ised with meningoencephalitis. He lives in a house ca 
2.2 km from the Tisvilde Hegn forest border where he 
sometimes walks, and noticed a tick bite perhaps from 
his own garden. He developed typical two-phased dis-
ease, with 5 days of fever and gastrointestinal symp-
toms followed by 2 days of recovery, before developing 
meningoencephalitis. Serum and cerebrospinal fluid 
(CSF) samples were analysed at Statens Serum 
Institute, Copenhagen, Denmark. Serum samples from 
the day of hospitalisation were positive for anti-TBEV 
IgM and IgG (Enzygnost ELISA, Siemens, Erlangen, 
Germany) [3]. CSF showed elevated leukocyte count 
(48 x 109/L; norm: 0 cells/L), increased protein (0.9 
g/L, norm: 0.15–0.50) and was positive for anti-TBEV 
IgM and IgG (Table 1). It was negative in RT-qPCRs for 
TBEV and flavivirus.

Case 2
Late June 2019, a man in his late 60s developed fever, 
influenza-like symptoms and increasing fatigue. The 
patient lives in a house with a garden bordering the 
same forest as Case 1. He uses the forest recreationally 
and experiences daily tick bites. About 4 weeks later, 
at the end of July, he was hospitalised with symptoms 
of meningitis in terms of nausea, vomiting, headache, 
photophobia, and pain from the neck and the back. CSF 
was analysed at Statens Serum Institute, Copenhagen, 
Denmark and showed pleocytosis (mononuclear leuko-
cytes of 70 x 109/L; norm: 0 cells/L), elevated protein 
level (1.46 g/L, norm: 0.15–0-50) and positive anti-
TBEV IgM and IgG titres, and negative in RT-qPCRs for 
flavivirus and TBEV. Serum samples were positive for 
anti-TBEV IgM and IgG (Table 1).

Case 3
Late June 2019, a woman in her 30s was hospitalised 
with meningoencephalitis manifesting as headache, 
nausea, fatigue and photophobia. She presented with 
fever and dehydration, and was in a poor general con-
dition. Blood samples at admission had a low platelet 
and leukocyte count, and liver parameters were ele-
vated. Ten days earlier, at her summer cottage 3 km 
from the same forest, she spent time at a playground 
in the eastern part of the forest, where she noticed a 
tick bite on her thigh. About 5 days later, she devel-
oped back pain and fever, followed by influenza-like 
symptoms, loose stools and increasing fatigue. She 
had a few days of recovery, before hospitalisation for 
a week with clinical signs of meningoencephalitis. 
Unfortunately, no lumbar puncture or tests for TBE 
were initially performed. About 1 month later, in August 
2019, she still suffered from fatigue and quick excit-
ability and was seen at a hospital outpatient clinic. The 
patient asked to be tested for TBE and serology was 
strongly positive for anti-TBEV IgM and IgG. A serum 
sample 1 month later was still IgM and IgG positive 
(Table 1).
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Field sampling and whole genome sequencing 
of tick-borne encephalitis virus
Ticks were collected by flagging, i.e. dragging of a 1x1 
m white cloth through the grass, at Tisvilde Hegn in 
September and October 2019. The initial flagging took 
place at five different neighbouring sites, site 1–5, in 
a part of the forest bordering the forest playground 
on the eastern side where Case 3 received a tick bite 
(Figure 1).

As of 26 September, a total of 725 ticks were collected, 
626 nymphs and 99 adults, and divided into 24 pools 
(Table 2).

RNA was extracted using MagNA Pure Large Volume kit 
on a MagNA Pure 96 instrument (Roche Diagnostics, 
Risch-Rotkreuz, Switzerland), and a TBEV-specific 
RT-qPCR [4,5] was run in a quality-controlled routine 
diagnostic reference laboratory. TBEV prevalence in 
individual ticks were estimated from the pooled sam-
ples using an online calculator for variable pool sizes 
while assuming a perfect diagnostic test [6].

Three pools containing nymphs from site 3, border-
ing the playground, were all positive and of these, two 
pools were strongly positive (ct values: 17 and 20). 
Furthermore, one pool containing nymphs from site 5, 
ca 50–100 m from the playground, was also positive (ct 
value: 35) (Table 2).

To further localise the TBEV micro-focus, the areas 
directly bordering the forest playground were divided 
into three smaller subsites and flagged once more 
in October 2019 (Figure 1). A total of 368 ticks, 348 
nymphs and 20 adults, were collected and divided into 
41 pools (Table 2). Four of 11 pools from site 3A, two 

of 19 pools from site 3B and all five pools from site 
4A contained nymphs positive for TBEV. No TBEV was 
found in pools of adult ticks. Sites 3A and 4A, the two 
sites forming a 20 m wide belt along the eastern side 
of the playground were strongly positive (ct values: 15 
and 18), as compared with the more distant site 3B. 
The joint prevalence of TBEV in sites 3A and 4A was 
estimated to 8% (95% confidence interval (CI): 4–14%) 
(Table 2).

Metagenomic whole genome sequencing of nine of the 
positive tick pools were performed using the Nextera 
XT DNA Library Prep Kit (Illumina Inc., San Diego, 
United States) and the Illumina MiSeq platform. For 
sequence comparison, the TBEV PCR-positive tick pool 
from Tokkekøb Hegn in 2009 was also full-genome 
sequenced and included in the analysis. Four complete 
whole genome sequences, three from Tisvilde Hegn 
and one from Tokkekøb Hegn, with an average cover-
age > 100x was obtained. Phylogenetic and molecular 
evolutionary analyses using MEGA X [7] of the full-
length genome sequences from Tisvilde Hegn showed 
that all three were identical and grouped closely with 
a TBEV strain from Mandal, Norway (Figure 2). In 
contrast, the TBEV sequence from Tokkekøb Hegn 
grouped with TBEV strains from Sweden (Figure 2). The 
sequences have been deposited in GenBank.

Discussion
The incidence of TBE has been increasing in Denmark, 
in its neighbouring countries as well and in the rest of 
Europe in recent years, which mirrors the increased 
abundance of ticks, the increased geographic spread 
and potentially climate changes [8-11]. The vector for 
the European virus subtype, TBEV-Eu, is Ixodes ricinus, 
which is prevalent in most of Europe and the domi-
nant tick species in Denmark (> 90%) [12]. In 2009, two 

Table 1
TBEV-specific IgG and IgM antibody detection in tick-borne encephalitis cases by time of sampling, Northern Zealand, 
Denmark, 2019 (n = 3)

Case Material Day of samplinga
TBEV IgG 

 
(U/ml)b

TBEV IgM 
 

(Index)c

1
Serum 0 28.4 10.0

CSF 5 29.1 3.2
Serum 10 22.8 8.2

2

CSF 0 43.7 1.1
Serum 0 106.8 6.9
Serum 2 118.5 6.6
Serum 10 73.5 5.8

3
Serum 42 118.5 3.2
Serum 74 154.0 1.8

CSF: cerebrospinal fluid; TBEV: tick-borne encephalitis virus.
a Day 0 = day of hospital admission.
b The IgG antibody concentrations (U/ml) were interpreted according to the manufacturer’s instructions (range 7–700 U/ml).
c The specific IgM antibody concentrations are presented as indices according to manufacturer’s instructions (index 1.0–1.4 weakly positive 

and index > 1.4 positive).
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Figure 1
Map of Denmark, Northern Zealand and Tisvilde Hegn, 2019

A.

C.

B.

A. shows a map of Denmark and B. shows a map of Northern Zealand with the new tick-borne encephalitis (TBE) micro-focus in Tisvilde 
Hegn (red ring). It also shows a previous TBE micro-focus at Tokkekøb Hegn (blue ring) and the residence of the three human cases (in red). 
C. illustrates the tick flagging sites, the forest playground, marked with a blue dot, and the five initial flagging areas, sites 1–5. Areas 3 
and 4 were divided into two new areas, of which 3A, 3B and 4A were flagged separately. Map source: Esri, DigitalGlobe, GeoEye, Earthstar, 
Geographics, CNES, Airbus DS, USDA, AeroGRID, IGN, and the GIS User Community.
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clinical cases of TBE were reported outside Bornholm 
and TBEV was detected in Northern Zealand in ticks 
collected in the forest of Tokkekøb Hegn, which is 40 
km south-east of Tisvilde Hegn, in 2009, 2010 and 
2011 [4,5]. Surprisingly, TBEV was no longer detected in 
the same area in Tokkekøb Hegn during 2016 and 2017 
[13]. In 2018, another two human cases of TBE outside 
Bornholm were identified on the Island of Funen and 
in Jutland, respectively, but no new micro foci of TBEV 
has been localized [14], (data not shown).

All three patients presented here live close to Tisvilde 
Hegn in Northern Zealand, and had typical biphasic 
disease starting with fever, gastro-intestinal or influ-
enza-like symptoms and fatigue, followed by a few 
days of recovery before clinical meningitis/meningoen-
cephalitis at hospitalisation and neurologic sequelae 
in terms of primarily fatigue and dizziness.

Subsequent collection of  I. ricinus  ticks from a part of 
Tisvilde Hegn surrounding a well-visited forest play-
ground, where Case 3 recalled a tick bite, identified 
a specific area adjacent to the playground to be an 
acute, new, high-risk TBEV micro-focus in Northern 

Zealand. The estimated high prevalence of TBEV is 8% 
at the centre of the focus which exceeds recent preva-
lence estimates of 0.6% from endemic Bornholm, as 
well as Denmark’s neighbouring countries and most 
European countries [4,5,8,10,11,13,15]. The presence 
of the virus in nymphs, but not adult ticks, and the 
molecular evolutionary analyses of the homogeneous 
TBEV sequences suggests a single TBEV introduction 
in 2019, probably by migrating birds from Norway. 
Tisvilde Hegn and the forest playground is well-visited 
by Danish and international tourists, and containment 
measures such as fencing, grass cutting and signage 
along the playground’s eastern side have been made 
in order to minimise the risk of further infections and 
spreading.

Table 2
TBEV-specific RT-qPCR and estimated virus prevalence, Northern Zealand, Denmark, 2019

Sample site Sampling date 
(2019) Tick stage Number of 

ticks
Number of 

pools
Pool size 

(Number of ticks)
TBEV 

RT-qPCR
RT-qPCR 

(ct)

Estimated 
prevalence (%) 

(CI 95%)

1 19 September
Nymphs 124 3 40, 41, 43 0/3 No ct

All negative
Adults 26 2 18a, 8b 0/2 No ct

2 19 September
Nymphs 91 2 45, 46 0/2 No ct

All negative
Adults 15 2 4a, 11b 0/2 No ct

3 26 September
Nymphs 216 5 40, 41, 44, 45, 

46 3/5 17, 20, 35 2.0 
 

(1.0–6.0)Adults 33 2 18a, 15b 0/2 No ct

4 26 September
Nymphs 23 1 23 0/1 No ct

All negative
Adults 2 1 1a 0/1 No ct

5 26 September
Nymphs 172 4 41, 41, 43, 47 1/4 35 1.0 

 
(0.0–29.0)Adults 23 2 11a, 12b 0/2 No ct

3A 4 October
Nymphs 112 11 10c, 12 4/11 16, 16, 31, 

34
4.0 

 
(1.0–10.0)Adults 4 2 1a, 3b 0/2 No ct

3B 4 October
Nymphs 192 19 10c, 12 2/19 34, 39 1.0 

 
(0.0–3.0)Adults 15 3 4a, 5b, 6b 0/3 No ct

4A 4 October
Nymphs 44 5 10c, 4 5/5 15, 18, 31, 

32, 35 All positive
Adults 1 1 1a 0/1 No ct

3A and 4A 
jointly 4 October Nymphs 156 16 10c, 12, 4 9/16 NA

8.0 
 

(4.0–14.0)

CI: confidence interval; ct: cycle threshold; NA: not applicable; TBEV: tick-borne encephalitis virus.
a Adult female ticks.
b Adult male ticks.
c All pools contained 10 nymphs unless otherwise indicated.
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Figure 2
Maximum-likelihood phylogenetic tree of TBEV full genome sequences, Northern Zealand, Denmark, 2019
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TBEV: tick-borne encephalitis virus.

Bootstrapping with 1,000 iterations was implemented for statistical support. The tree is drawn to scale, with branch lengths measured in the 
number of substitutions per site. The three full-length TBEV sequences obtained from Tisvilde Hegn are marked. The TBEV sequence from 
Tokkekøb Hegn is shown, in addition to other TBEV full genome sequences from GenBank.
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The newly identified tick-borne Alongshan virus 
(ALSV), a segmented Jingmen virus group flavivirus, 
was recently associated with human disease in China. 
We report the detection of ALSV RNA in  Ixodes rici-
nus  ticks in south-eastern Finland. Screening of sera 
from patients suspected for tick-borne encephalitis 
for Jingmen tick virus-like virus RNA and antibodies 
revealed no human cases. The presence of ALSV in 
common European ticks warrants further investiga-
tions on its role as a human pathogen.

Recent reports have associated two members of 
Jingmen virus group, Alongshan virus (ALSV) and 
Jingmen tick virus (JMTV), to febrile disease in humans 
[1,2]. Here we report the presence and genetic charac-
terisation of ALSV in Ixodes ricinus ticks in Kotka archi-
pelago, south-eastern Finland.

In 2010, a novel segmented tick-borne RNA virus, JMTV, 
was detected in Rhipicephalus microplus ticks in Hubei 
Province, China [3]. Subsequently, similar viruses have 
been identified in R. microplus and cattle in Brazil, i.e. 
the Mogiana tick virus (MGTV) [4-6]; human Crimean-
Congo haemorrhagic fever (CCHF) cases in Kosovo* 
[7];  Amblyomma javanense,  Dermacentor silvar-
ium and I. persulcatus ticks as well as humans in China 
[1]; and a red colobus monkey in Uganda [8]. Recent 
reports associate novel JMTV strains from China with 
human disease [1,2]. A retrospective study conducted 
by Jia et al. reported identification of JMTV from skin 
biopsies and blood of febrile patients [1]. Meanwhile, 
ALSV was detected from  I. persulcatus  and isolated 
from febrile patient sera in Heilongjian Province [2]. 

These viruses share the genome organisation of four 
segments, two of which show similarity to the NS3 
and NS5 proteins of non-segmented RNA viruses in the 
genus Flavivirus. The other two segments appear to orig-
inate from an unknown ancestor. Together, the viruses 
form a separate and diverse group tentatively called 
the Jingmen virus group in the family Flaviviridae [9].

Detection of Jingmen-like virus in Kotka 
archipelago
In 2019, while performing a metatranscriptomic analy-
sis of ticks collected in 2011 from Haapasaari island, 
Kotka archipelago, south-eastern Finland, we detected 
a full genome of JMTV-like virus together with tick-
borne encephalitis virus (TBEV) genome. Thereafter, 
we used RT-PCR to screen 198 I. ricinus ticks collected 
from the Kotka archipelago in 2017 and 2018 for the 
presence of JMTV-like RNA. We found another positive 
tick from a neighbouring Kuutsalo island in the Kotka 
archipelago, and obtained the full genome using next-
generation sequencing. The viruses (GenBank acces-
sion numbers MN107153 to MN107160) cluster together 
with ALSV (MH158415 to MH158418) from Heilongjian 
Province, China, and form a cluster distinct from the 
other members JMTV group, including the strains 
found in Kosovo (MH133313 to MH133324) [2,7] (Figure 
1,  Figure 2,  Figure 3,  Figure 4,  Figure 5). Nucleotide 
and amino acid identities between the Finnish strains 
and the other tick-borne JMTV-like viruses are shown 
in  Table 1. The virus isolation trials in Vero, SK-N-SH 
and CRL-2088 cells were unsuccessful. 
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Human and tick samples
The emerging reports on the association of JMTV-like 
viruses with human disease in China [1,2] led us to 
investigate sera of TBE-suspected cases for JMTV-like 
virus RNA or antibodies against recombinant proteins 
of ASLV in 2019. The sera panel included 974 serum 
samples from 879 individuals. These samples were 
originally sent for TBEV antibody testing to Helsinki 
University Hospital laboratory (Helsinki, Finland) from 
May to November 2018. All samples were tested for 
JMTV RNA by RT-PCR, with 304 from 283 individuals 
(median age: 48 years, range: 1–88 years) for antibod-
ies to JMTV VP1a, VP1b, membrane and capsid proteins. 

For the RNA detection, we could verify that the RT-PCR 
detects local Finnish strains of ALSV, but we had no 
human ALSV positive control samples available for 
the antibody tests. We also studied three serial sam-
ples from two patients positive in an earlier sample 
for JMTV RNA from Kosovo at dilutions 1:20 and 1:80 
for reference. These two patients shown to be infected 
with Kosovo strains of JMTV (capsid/membrane 63.5–
64.0% amino acid identity, glycoprotein 49.9–50.1% 
amino acid identity) did not exhibit clear reactivity to 
the ALSV recombinant protein [7]. The 90 and 108 ticks 
collected in 2017 and 2018, respectively, from Kuutsalo 

Figure 1
The phylogenetic tree of NS3 segment of JMTV-like viruses
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JMTV: Jingmen tick virus.

The NS3 segment amino acid sequences of all available tick-borne Jingmen tick virus-like viruses were aligned using the ClustalW algorithm. 
The phylogenetic tree was constructed using the Bayesian Markov chain Monte Carlo (MCMC) method, implemented in MrBayes version 3.2 
[19]. The GenBank accession number of the strains sequenced in this study are MN107155 and MN107159.



20 www.eurosurveillance.org

island, Kotka archipelago in south-eastern Finland 
were tested for JMTV RNA (Table 2).

RNA and antibody detection
Ticks were homogenised and RNA was extracted as 
described previously [10]. Total nucleic acids from 
human serum samples were extracted using MagNa 
Pure LC 2.0 instrument and Total Nucleic Acid Isolation 
Kit (Roche, Basel, Switzerland). Viral RNA was detected 
with real-time or conventional reverse transcription 
(RT)-PCR targeting the NS5 gene. Primers and the 
probe were designed based on sequences available 
to us in August 2018, and we used JM F1312 as the 
forward primer (5’-TTCGGRGCMTGGCAMCTSACCT-3’), 

JM1548 as the reverse primer 
(5’-CCKGTTDTCCATYTGGTADCCCAT-3’), and JM2 as 
the probe (FAM-CTCCTAAAGATGTTAAACACTGC-BHQ). 
Conventional RT-PCR without the probe was initially 
used for tick samples with SuperScript III One-Step 
RT-PCR System with Platinum Taq DNA Polymerase 
(Invitrogen, Carlsbad, California, United States (US)). 
Patient and tick samples were screened with real-time 
RT-PCR using the TaqMan Fast Virus 1-Step Master Mix 
(Thermo Scientific, Waltham, Massachusetts, US). An 
in vitro transcribed RNA served as the positive control.

Synthetic gene constructs encoding JTMV glycopro-
teins VP1a, VP1b, membrane and capsid proteins were 

Figure 2
The phylogenetic tree of NS5 segment of JMTV-like viruses
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The NS5 segment amino acid sequences of all available tick-borne Jingmen tick virus-like viruses were aligned using the ClustalW algorithm. 
The phylogenetic tree was constructed using the Bayesian Markov chain Monte Carlo (MCMC) method, implemented in MrBayes version 3.2 
[19]. The GenBank accession number of the strains sequenced in this study are MN107156 and MN107160.
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cloned into pCAGGS/MCS [11]. The recombinant and 
empty plasmids were transfected into Vero E6 cells 
using Fugene HD according to the manufacturer’s 
instructions. The transfected cells were fixed onto 
microscopic slides with acetone, serum samples were 
diluted 1:20 in phosphate-buffered saline and immuno-
fluorescence assay was performed as described previ-
ously [12].
 

Next generation sequencing and 
phylogenetic analysis
Tick homogenates were treated with a mixture of mic-
rococcal nuclease (New England BioLabs Ipswich, 
Massachusetts, US) and benzonase (Millipore, 
Burlington, Massachusetts, US) for 1 hour at 37 °C, fol-
lowed by RNA extraction using TriPure Isolation reagent 
(Roche, Basel, Switzerland). RRNA was removed using 
a NEBNext rRNA Depletion Kit (New England BioLabs) 
according to the manufacturer’s protocol. The sequenc-
ing library was prepared using a NEBNext Ultra II RNA 
Library Prep Kit (New England BioLabs). The library 
fragment sizes were measured using agarose gel 

Figure 3
The phylogenetic tree of putative capsid/membrane segment of JMTV-like viruses
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The putative capsid/membrane segment amino acid sequences of all available tick-borne Jingmen tick virus-like viruses were aligned using 
the ClustalW algorithm. The phylogenetic tree was constructed using the Bayesian Markov chain Monte Carlo (MCMC) method, implemented in 
MrBayes version 3.2 [19]. The GenBank accession number of the strains sequenced in this study are MN107153 and MN107157.
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electrophoresis and the concentrations using Qubit 
dsDNA BR Assay Kit (Life Technologies, Carlsbad, 
California, US) and NEBNext Library Quant Kit for 
Illumina (New England BioLabs). Sequencing was con-
ducted using MiSeq Reagent Kit V2 with 150 bp reads.

Raw sequence reads were trimmed and low-quality, 
quality score < 15, and short, < 36 nt, sequences were 
removed using Trimmomatic [13]. Thereafter, de novo 
assembly was conducted using MegaHit [14]. Open 
reading frames were sought using MetaGeneAnnotator 
[15], followed by taxonomic annotation using 
SANSparallel [16].

Complete genome sequences of all available tick-borne 
JMTV-like viruses were downloaded from GenBank 
(accessed June 2019). The amino acid sequences were 
aligned using the ClustalW algorithm followed by 
manual refinement. In addition, NS5 sequences of the 
representatives of all flavivirus species were retrieved 
from NCBI Reference Sequence Database (RefSeq) and 
aligned with MAFFT programme version 7 [17] using 
E-INS-i algorithm, followed by removal of ambiguously 
aligned amino acid sites using TrimAl programme [18].

The phylogenetic trees were constructed using the 
Bayesian Markov chain Monte Carlo (MCMC) method, 
implemented in MrBayes version 3.2 [19] with two 

Figure 4
The phylogenetic tree of putative glycoprotein segment of JMTV-like viruses
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The putative glycoprotein segment amino acid sequences of all available tick-borne Jingmen tick virus-like viruses were aligned using the 
ClustalW algorithm. The phylogenetic tree was constructed using the Bayesian Markov chain Monte Carlo (MCMC) method, implemented in 
MrBayes version 3.2 [19]. The GenBank accession number of the strains sequenced in this study are MN107154 and MN107158.
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Figure 5
The phylogenetic tree of NS5 of all species in the family Flaviviridae
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NS5 sequences of the representatives of all flavivirus species were retrieved from NCBI Reference Sequence Database (RefSeq) and aligned 
with MAFFT programme version 7 [17] using E-INS-i algorithm, followed by removal of ambiguously aligned amino acid sites using TrimAl 
programme [18]. The phylogenetic tree was constructed using the Bayesian Markov chain Monte Carlo (MCMC) method, implemented in 
MrBayes version 3.2 [19].

Table 1
Nt and amino acid identities between Finnish strains of Alongshan virus and other tick-borne JMTV-like viruses, Finland, 
2019

Segment
Nt identity (%) Amino acid identity (%)

ALSV (Finland) ALSV (China) Other JMTV-like 
viruses ALSV (Finland) ALSV (China) Other JMTV-like 

viruses

Putative capsid/membrane 5.3 9.5–9.7 33.1–37.7 1.4 2.4–2.8 29.0–36.3
Putative glycoprotein 1.5 8.0–8.1 35.9–43.1 0.5 4.4a 38.3–51.2
NS3 4.8 8.8–9.0 28.1–31.1 0.5 1.4–1.6 16.1–21.7
NS5 4.0 10.5–10.6 28.3–32.1 0.9 2.1–2.5 19.8–21.6

ALSV: Alongshan virus; JMTV: Jingmen tick virus; Nt: nucleotide.
a Both ALSV strains from Finland have the same number of amino acid differences compared to the Chinese strain.
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independent runs and four chains per run. The analysis 
was run for 5 million states and sampled every 5,000 
steps.

Conclusion
Our findings show that ALSV, a newly described tick-
borne human pathogen, is also present in south-
eastern Finland. Notably, ALSV was detected in  I. 
ricinus  ticks, a tick species that is common across the 
European continent. Despite apparent ALSV circulation 
in the south-eastern archipelago of Finland, no ALSV 
RNA or antibodies to selected recombinant ALSV 
proteins were found in ca 900 Finnish patients sus-
pected for TBEV infection in recent years. While our 
results suggest low human infection pressure, further 
research using other methods, including properly eval-
uated ALSV antibody tests, and focusing on other geo-
graphic areas and patient cohorts beyond meningitis 
or encephalitis cases is needed.

Note
*This designation is without prejudice to positions on status, 
and is in line with United Nations Security Council Resolution 
1244/99 and the International Court of Justice Opinion on the 
Kosovo Declaration of Independence.
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Background: Neurotropic arboviruses are increasingly 
recognised as causative agents of neurological dis-
ease in Europe but underdiagnosis is still suspected. 
Capability for accurate diagnosis is a prerequisite for 
adequate clinical and public health response. Aim: To 
improve diagnostic capability in EVD-LabNet labora-
tories, we organised an external quality assessment 
(EQA) focusing on molecular detection of Toscana 
(TOSV), Usutu (USUV), West Nile (WNV) and tick-borne 
encephalitis viruses (TBEV). Methods: Sixty-nine labo-
ratories were invited. The EQA panel included two WNV 
RNA-positive samples (lineages 1 and 2), two TOSV 
RNA-positive samples (lineages A and B), one TBEV 
RNA-positive sample (Western subtype), one USUV 
RNA-positive sample and four negative samples. The 
EQA focused on overall capability rather than sensi-
tivity of the used techniques. Only detection of one, 
clinically relevant, concentration per virus species and 
lineage was assessed. Results: The final EQA analy-
sis included 51 laboratories from 35 countries; 44 of 
these laboratories were from 28 of 31 countries in the 
European Union/European Economic Area (EU/EEA). 
USUV diagnostic capability was lowest (28 laboratories 
in 18 countries), WNV detection capacity was highest 
(48 laboratories in 32 countries). Twenty-five labora-
tories were able to test the whole EQA panel, of which 
only 11 provided completely correct results. The high-
est scores were observed for WNV and TOSV (92%), 
followed by TBEV (86%) and USUV (75%). Conclusion: 
We observed wide variety in extraction methods and 
RT-PCR tests, showing a profound absence of stand-
ardisation across European laboratories. Overall, the 

results were not satisfactory; capacity and capability 
need to be improved in 40 laboratories.

Background
The aetiology of neuro-invasive viral infections remains 
undetermined in more than 50% of cases [1]. Several 
viruses can cause infections of the central nervous 
system (CNS) while, regardless of the causative aeti-
ology, clinical manifestations are often similar, making 
a confirmed diagnosis dependant on laboratory test-
ing [2]. Neurotropic arboviruses are increasingly rec-
ognised as causative agents of neurological disease 
in Europe but underdiagnosis is still suspected [3]. 
Confirmed involvement of arboviruses is important for 
risk communication and risk management strategies, 
the latter including activities like local vector control, 
blood safety measures and vaccination campaigns. 
Four neurotropic arboviruses are emerging and have 
become endemic in large parts of Europe: Toscana virus 
(TOSV), Usutu virus (USUV), West Nile virus (WNV) and 
tick-borne encephalitis virus (TBEV).

The TOSV (genus Phlebovirus,  family Phenuiviridae) is 
transmitted by sandflies of the genus Phlebotomus and 
circulates in Mediterranean countries where it can 
cause febrile illness and neuroinvasive infections. At 
least 250 million people are exposed in Europe and 
neighbouring countries around the Mediterranean 
basin that are frequently visited by travellers for occu-
pational or leisure purposes [4–7]. In France, Spain and 
Italy, TOSV is among the three most common agents 
causing aseptic meningitis and encephalitis, together 
with enteroviruses and herpesviruses (herpes simplex 
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and varicella–zoster viruses) [8]. Viraemia is short-
lived (typically 5 days, range: 2–7) and diagnosis is 
done either by detecting viral RNA in cerebrospinal 
fluid (CSF) or serum at the acute stage of infection 
or by detecting IgM in an early serum sample [8]. The 
currently known circulation of three genetic lineages 
may be indicative of a wide genetic diversity of this 
viral species and thus molecular assays are needed to 
detect genetic variants [8].

WNV (genus  Flavivirus, family  Flaviviridae) is trans-
mitted by  Culex  spp. mosquitoes. WNV can cause 
febrile illness with or without neurological manifesta-
tions. During the last decade, WNV activity in Europe 
has shown a profile similar to that observed in North 
America, with substantial activity reported every year 
and with recurring major outbreaks [9,10]. Major recent 
activity in the eastern Mediterranean region is also a 
matter of concern for Europe [11].

Lineages 1 and 2 have been identified in human WNV 
cases in Europe [12]. Severe cases are more frequent in 
elderly and immunocompromised patients. In the acute 
stage of disease, WNV RNA can be detected in CSF. 
WNV viraemia is typically short-lived, but viral RNA 
can be detected for longer periods in some specimens 
such as urine and whole blood, and also in fatal cases 
or immunocompromised patients. The high degree of 
cross-reactivity with other flaviviruses in serology is 
problematic. Although a combination of serology and 
PCR is desirable, the detection of WNV RNA alone is an 

important means of undisputable confirmation of acute 
infection [13].

USUV (genus  Flavivirus, family  Flaviviridae) was first 
isolated in Africa in 1959 [13]. It is a Culex-transmitted 
flavivirus closely related to WNV [13]. The earliest 
human cases (presenting as neuro-invasive disease) 
were recorded in 2009 in Italy in two immunocompro-
mised patients having received blood products [13]. 
Since then evidence of zoonotic transmission accom-
panied by neurological disease of USUV is accumulat-
ing while population studies show the occurrence of 
asymptomatic infections [13]. Nothing is known about 
the length of USUV viraemia and the kinetics of anti-
body production in humans [13]. Based on its close 
relatedness to WNV, viraemia is expected to be short 
and low level [13]. At the acute stage of neuroinvasive 
infection the virus is expected to be detectable by 
RT-PCR in CSF. A high degree of cross-reactivity with 
other flaviviruses is seen in serology. For this reason, 
molecular detection is the preferred method for con-
firmatory laboratory diagnosis.

TBEV (genus  Flavivirus, family  Flaviviridae) is a tick-
borne flavivirus; the incidence of TBEV infection 
in humans and its geographical distribution have 
increased in Europe [14]. Three subtypes are recog-
nised, of which the Western subtype is endemic in 
northern, central and eastern Europe. The clinical 
spectrum of the disease ranges from mild meningi-
tis to severe meningoencephalitis. The course of TBE 
is often biphasic. The first acute phase typically has 

Table 1
Nucleic acid extraction methods used in the external quality assessment for molecular detection of emerging neurotropic 
viruses, Europe (n = 51 laboratories)

Extraction method Number of laboratories
QIAamp Viral RNA Mini Kit (Qiagen, Hilden) 21
NucliSENSE EasyMag (BioMérieux, Marcy-L’étoile) 4
EZ1 Virus Mini Kit (Qiagen, Hilden) 3
MagNA Pure 96 DNA and Viral NA kit (Roche, Meylan) 3
RNeasy Mini kit (Qiagen, Hilden) 2
QIAamp MinElute Virus Spin Kit (Qiagen, Hilden) 2
MagNa Pure LC total NA kit (Roche, Meylan) 2
MagNa Pure Compact NA isolation kit (Roche, Meylan) 2
iPrep PureLink Virus Kit (Thermo Fisher, Bourgoin-Jallieu) 2
QIAamp DSP Virus (Qiagen, Hilden) 1
Maxwell RSC Viral Total NA Purification Kit (Promega, Charbonnières-les-Bains) 1
QIAxtractor VX (Qiagen, Hilden) 1
QIAamp RNA Blood Mini Kit (Qiagen, Hilden) 1
MagCore Viral NA extraction kit (RBCBioscience, New Taipei City) 1
TriPure isolation reagent (Sigma-Aldrich, Saint-Louis) 1
High Pure Viral RNA kit (Roche, Meylan) 1
NucleoSpin RNA Virus (Macherey-Nagel, Düren) 1
MagDea NA extraction kit for magLead (PSS-Ltd, Tokyo) 1
RIBO-prep NA extraction kit (AmpliSense, Voisins-Le-Bretonneux) 1
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non-specific symptoms. It is followed by an asympto-
matic interval that precedes the second phase char-
acterised by neuroinvasive disease. Therefore, the 
window of molecular detection in serum and CSF is 
often missed as diagnostics are typically requested 
during the second phase of illness. Once neurological 
symptoms are manifest, TBEV RNA is rarely detected 
in blood and CSF. However, in endemic regions, unex-
plained febrile illness alone can justify molecular test-
ing. As TBEV cases often do not present with typical 
symptoms, diagnosis often relies on laboratory docu-
mentation. As for WNV, viraemia is typically short-lived 
and low while serology is hampered by extensive cross-
reactivity among flaviviruses [15].

To support molecular diagnostic capacity and capability 
building for these emerging neurotropic viruses in the 
European Union(EU)/ European Economic Area (EEA) 
and EU pre-accession countries, an external quality 
assessment (EQA) was organised for members of the 

expert laboratory network EVD-LabNet (https://www.
evd-labnet.eu/) funded by the European Centre for 
Disease Prevention and Control. Here, we present this 
assessment and the inventory of methods for RT-PCR 
detection of these viruses that are used in European 
and national reference laboratories.

Methods

EQA scheme organisation
All members of EVD-LabNet (69 laboratories at 1 
November 2017) were invited by email to participate 
through online registration. Fifty-four laboratories from 
35 countries registered online.

Panel composition
The EQA panel consisted of 10 samples with six 
samples positive for one of four different viral spe-
cies (plasma samples spiked with viruses), and four 
negative control samples. The panel included two 

Figure 1
Number of laboratories per country that provided results for Toscana virus, external quality assessment for molecular 
detection of emerging neurotropic viruses, Europe (n = 32 laboratories)

 Malta

1
1

1

1

1

1
1

1

1
6

4
1

4

2

1

1

1

EQA participant

EQA-TOSV participant
EQA production

2

1

EQA: external quality assessment; TOSV: Toscana virus.

Blue: countries participating with TOSV RNA testing; dark blue: France (the Unite des Virus Emergents (National Reference Centre for 
arboviruses) at Aix Marseille University prepared and anonymised the panel); light blue: countries that submitted results for viruses other 
than TOSV.



29www.eurosurveillance.org

WNV RNA-positive samples (WNV lineage 1, strain 
UVE/WNV/2001/FR/DON2001 (ref#001V-02215), 
7.2 × 104  RNA copies/0.4 mL [16] and WNV lineage 
2, strain B956 source BNI, Hamburg, 4.96 × 105  RNA 
copies/0.4 mL), two TOSV RNA-positive samples 
(TOSV lineage A, strain UVE/TOSV/2010/TN/ T152 
(ref#001V-02119), 1.57 × 105  RNA copies/0.4 mL [17] 
and TOSV lineage B, strain UVE/TOSV/2010/FR/4319 
(ref#001V-02442), 1.24 × 105  RNA copies/0.4 mL [18]), 
one TBEV RNA-positive sample (Western subtype, 
strain UVE/TBEV/1953/CZ/Hypr (ref#001V-EVA134), 
5.06 × 104  RNA copies/0.4mL [19]), one USUV RNA-
positive sample (USUV, strain  Turdus merula  NL2016 
(ref#011V-02153), 6.34 × 103  RNA copies/0.4 mL) [20] 
and four viral RNA-negative plasma samples. Strains 
referenced in the European Virus Archive (EVA) can be 
accessed at https://www.european-virus-archive.com.
Each sample of the panel was prepared from a batch 
that consisted of qualified non-therapeutic human 
plasma obtained from the French blood bank, spiked 
with virus culture supernatant and heat-inactivated at 
60 °C for 1 hour. A total of 70 0.4-mL aliquots were pre-
pared and freeze-dried into glass vials. Proper inactiva-
tion was confirmed by the absence of cytopathic effect 
in Vero cells and by undetectable increase of the viral 
RNA titre in the supernatant 5 days after inoculation. 
The viral loads per reconstituted sample were quanti-
fied with reference to in-house TOSV-, WNV-, TBEV- 
and USUV-specific synthetic RNA controls; a fragment 
(ca 500 bp) tagged at the 5’end with the T7 promoter 
sequence (5’TAATACGACT CACTATAGGG3’) and con-
taining the virus-specific TaqMan-targeted sequence 
was amplified by RT-PCR using the Access RT-PCR 

kit (Promega, Charbonnières-les-Bains). The result-
ing PCR products were purified and transcribed using 
the T7 Megashort script kit (Ambion, ThermoFisher 
Scientific, Bourgoin-Jallieu). The obtained RNA was 
purified with the MegaClear purification kit (Ambion, 
Bourgoin-Jallieu). RNA concentration was measured 
using a NanoDrop 1000 (Thermo Scientific, Bourgoin-
Jallieu) and translated into copy numbers. Real-time 
RT-PCR was performed using the Express One-Step 
Superscript qRT-PCR Kit, universal (Life technologies, 
Bourgoin-Jallieu) on a QuantStudio 12K Flex Real-Time 
PCR System. For each EQA sample, the number of cop-
ies contained in 0.4 mL of freeze-dried material in the 
glass vial was calculated by comparison with a dilution 
series of T7-generated RNA standard containing 102  to 
108 RNA copies.

Result submission, evaluation and EQA scoring
We provided the Laboratories with a link to an online 
form to submit their EQA results. Laboratories could 
indicate for which of the four target viruses they had 
tested the EQA panel and background information of 
the diagnostic tests that the laboratory assessed with 
the EQA. Data were collected and analysed in Microsoft 
Excel 2011. Fisher’s exact test (www.socscistatistics.
com/tests/fisher/Default2.aspx) was used to compare 
the rate of false-negative results obtained with virus-
specific real-time assays and with other assays for 
TOSV, USUV, TBEV and WNV. Fisher’s exact test was 
used because the significance of the deviation from a 
null hypothesis can be calculated exactly, rather than 
relying on an approximation that becomes exact in the 

Table 2
RT-PCR methods used for Toscana virus RNA detection, external quality assessment for molecular detection of emerging 
neurotropic viruses, Europe (n = 32 laboratories).

Target Method Number of laboratories False-negativea

Toscana virus-specific
TOSV N Perez-Ruiz et al., 2007 [29]b 13 1 (lineage B)
TOSV N Weidmann et al., 2008 [30]b 5 None
TOSV N Brisbarre et al., 2015 [31]b 2 None
TOSV L Sanchez-Seco et al., 2003 [43]c 1 1 (lineage B)
TOSV various Own designd 5 1 (lineage B)
TOSV N Progenie (commercial)b 1 None
Pan-phlebovirus

Pan-phlebo L/Ne Sanchez-Seco et al., 2003 [43] 7
1 (lineage A), 

 
2 (lineage B)

Pan-phlebo N Lambert and Lanciotti, 2009 [44] 1 1 (lineage B)
Pan-phlebo unknown Own designd 1 None

TOSV: Toscana virus.
a The missed TOSV lineage is indicated between brackets.
b Included in statistical analysis as classified as virus-specific real-time RT-PCR.
C Included in statistical analysis as classified as conventional RT-PCR.
d Excluded from statistical analysis as no distinction could be made whether it is real-time RT-PCR or conventional RT-PCR.
e Not all participants indicated which of two pan-Phlebo RT-PCRs in the reference was used.
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limit as the sample size grows to infinity, as with the 
chi-squared test.

Results

EQA participation
The final EQA analysis included 51 laboratories form 35 
countries: 44 laboratories from 28 EU/EEA countries, 
four laboratories from four EU pre-accession coun-
tries (Albania, North Macedonia, Serbia and Turkey) 
and three laboratories from three non-EU/EEA coun-
tries (Israel, Russia and Switzerland). From the EU/
EEA, there was no participation from laboratories in 
Iceland and France besides the reference laboratory in 
Marseille that produced the panel. Liechtenstein does 
not have a reference laboratory participating in EVD-
LabNet. From EU pre-accession countries, there was no 
participation by Bosnia and Herzegovina, Montenegro 
and Kosovo*, the two latter being not members of EVD-
LabNet at the time.

Nucleic acid extraction methodology
The different techniques used for extraction of nucleic 
acids are presented in the Table 1. Various Qiagen kits 
were used by 31 laboratories: 21 used the QIAamp Viral 
RNA Mini Kit (Qiagen, Hilden) and the remaining 10 
laboratories used six different Qiagen kits. The extrac-
tion kits from Roche (Meylan) were the second most 
frequently used brand, with eight laboratories using 
four different types of Roche kits. Because of the high 
diversity, it was impossible to include the type of RNA 
purification in the analysis.

Toscana virus
Of the 51 laboratories, 32 laboratories in 19 countries 
(17 EU/EEA, one EU candidate, one other) tested the 

panel for the presence of TOSV RNA (Figure 1). Nineteen 
laboratories in 19 countries had no TOSV test availa-
ble. Seven laboratories used a pan-phlebovirus RT-PCR 
only, 23 laboratories a TOSV-specific RT-PCR only and 
two laboratories used both type of tests in combina-
tion. Some laboratories used more than one TOSV-
specific or pan-phlebovirus test (Table 2).

Excluding TOSV-specific assays for which no informa-
tion was available (n = 10), TOSV-specific real-time 
tests (n = 42) provided false-negative results signifi-
cantly less frequently than all other tests together (pan-
phlebo, classic and nested RT-PCR; n = 20; p = 0.011). 
Thirty-one of the 32 laboratories detected TOSV RNA 
correctly in sample #1 (lineage A) and 28 laboratories 
detected TOSV RNA correctly in sample #2 (lineage B). 
The RT-PCR tests used by laboratories that missed the 
presence of TOSV in sample #1 (n = 1) or in sample #2 
(n = 6) are presented in Table 2. One laboratory falsely 
detected TBEV RNA besides TOSV RNA in sample #1 
(Table 3).

West Nile virus
Forty-eight laboratories in 32 countries (26 EU/EEA, 
four EU candidates and two other) tested the panel for 
WNV RNA (Figure 2). One laboratory used a pan-flavi 
RT-PCR test while 28 laboratories used a WNV-specific 
RT-PCR. Eighteen laboratories used both a pan-flavi 
and WNV-specific RT-PCR, but the questionnaire did 
not allow linking the result with either assay. One 
laboratory did not report what type of test was used. 
Some laboratories used more than one RT-PCR test 
(Table 4). The diversity of WNV-specific tests used was 
high with a total of 25 different tests. Excluding WNV-
specific assays for which no information was available 
(n = 4), there was no statistically significant difference 

Table 3
Summary of results of laboratories in the external quality assesment on molecular diagnostics of emerging neurotropic 
viruses, Europe (n = 51)

Sample ID 1a 2 3 4 5 6 7 8 9 10

Virus
TOSV 

(lineage 
A)

TOSV 
(lineage 

B)
USUV

WNV 
(lineage 

1)

WNV 
(lineage 

2)
TBEV Negative Negative Negative Negative

Concentration
1.57 x 

105 RNA 
cp/0.4mL

1.24 x 
105 RNA 

cp/0.4mL

6.34 x 
103 RNA 

cp/0.4mL

7.2 x 
104 RNA 

cp/0.4mL

4.96 x 
105 RNA 

cp/0.4mL

5.06 x 
104 RNA 

cp/0.4mL
n/a n/a n/a n/a

Total correct positive when 
tested for the specific virus 31/51 28/51 23/51 42/51 46/51 37/51 n/a n/a n/a n/a

Total correct positive when 
not tested for the specific 
virus

17/51 18/51 19/51 2/51 2/51 8/51 n/a n/a n/a n/a

Total correct 48/51 46/51 42/51 44/51 48/51 45/51 47/51 48/51 49/51 48/51
Total partially correct: 
identification at the genus 
level

0/51 0/51 1/51 2/51 1/51 2/51 n/a n/a n/a n/a

False 4/51 5/51 5/51 5/51 2/51 4/51 3/51 3/51 1/51 3/51
Total sentivity 31/32 28/32 21/28 42/48 46/48 36/42 n/a n/a n/a n/a

n/a: not applicable; TBEV: tick-borne encephalitis virus; TOSV: Toscana virus; USUV: Usutu virus; WNV: West Nile virus.
a Number > 100% as one laboratory submitted both a correct result (positive for TOSV) and one false result (positive for TBEV) for this sample.
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between results provided by WNV-specific real-time 
tests (n = 29) and all other tests together (real-time 
pan-flavi, classic and nested RT-PCR; n = 22; p = 0.38).
Forty-two of 48 laboratories that tested the panel for 
the presence of WNV RNA detected WNV RNA correctly 
in sample #4 (lineage 1), while one laboratory indicated 
to have detected flavivirus RNA. Five laboratories 
falsely scored sample #4 as negative. WNV RNA was 
correctly identified in sample #5 (lineage 2) by 46 of 48 
laboratories. Of the two laboratories providing a false-
negative result for sample #5, one laboratory reported 
the presence of TBEV RNA in sample #5; the other 
reported the presence of flavivirus RNA, although it did 
not claim to test for WNV (Table 3).

Usutu virus
Twenty-eight laboratories in 18 countries (16 EU/EEA, 
two other) tested the panel for USUV (Figure 3). Six 
laboratories used a pan-flavivirus RT-PCR test only, 
15 used an USUV-specific RT-PCR only and seven used 
both a pan-flavivirus and USUV-specific RT-PCR, but it 

was impossible to trace which one was used to provide 
the submitted results. Some laboratories used more 
than one USUV-specific or pan-flavivirus RT-PCR test. 
There was a lot of variation in USUV-specific RT-PCRs 
used, with 17 different test systems (Tables 3 and 5).

Excluding USUV-specific assays for which no informa-
tion was available (n = 4), USUV-specific real-time tests 
(n = 20) provided false negative results significantly 
less frequently than all other tests together (real-time 
pan-flavi, classic and nested RT-PCR; n = 15; p = 0019). 
Seven of the 28 laboratories that tested the panel for 
USUV missed the positive sample #6. The RT-PCR tests 
used by these laboratories are indicated in Table 5.

Tick-borne encephalitis virus
Forty-two laboratories in 28 countries (25 EU/EEA, 
three other) tested the panel for TBEV RNA (Figure 4): 
seven used a pan-flavi RT-PCR test only, 24 used a 
TBEV-specific RT-PCR only and 11 used both a pan-flavi 
and TBEV-specific RT-PCR, however, the questionnaire 

Figure 2
Number of laboratories per country that provided results for West Nile virus, external quality assessment for molecular 
detection of emerging neurotropic viruses, Europe (n = 48 laboratories)
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did not permit to trace submitted results to one or the 
other assay. Moreover, some laboratories used more 
than one pan-flavivirus test. Table 6 gives an overview 
of the different RT-PCRs tests that were used on the 
EQA panel to detect TBEV RNA.

Excluding TBEV-specific assays for which no infor-
mation was available (n = 4), there was no statisti-
cally significant difference between results provided 
by TBEV-specific real-time tests (n = 29) and all other 
tests together (real-time pan-flavi, classic and nested 
RT-PCR n = 25; p = 1).

Thirty-six of 42 laboratories that tested the panel for 
the presence of TBEV RNA detected TBEV RNA correctly 
in sample #3. Four laboratories falsely scored sample 
#3 as negative including those using two commercial 
tests. One laboratory falsely indicated the presence of 
WNV RNA. One laboratory scored sample #3 as pan-
flavi-positive only (Table 3).

Contamination
Contamination issues were noticed in six of the 51 par-
ticipating laboratories. Contamination issues involved 
detection of flavivirus, Zika virus, WNV or TBEV RNA in 
the negative control samples or in samples containing 
other specific viruses.

Discussion
Fifty-one laboratories from 35 countries (28 EU/EEA, 
four EU pre-accession, three non-EU/EEA) participated 
in this EQA on molecular detection of emerging neu-
rotropic viruses. Twenty-five laboratories in 16 coun-
tries (15 EU/EEA, one non-EU/EEA) reported capacity 
for testing of all four EQA target viruses. However, only 
11 of the 25 scored the panel 100% correct. These 11 
laboratories represented 10 EU/EEA countries and 
one non-EU/EEA country. Overall, the results of the 
EQA are not satisfactory. The capacity and capability 
for molecular detection needs to be improved in the 
vast majority of the participating laboratories because 
these four viruses demonstrate a growing burden on 

Table 4
RT-PCR methods used for West Nile virus RNA detection, external quality assessment for molecular detection of emerging 
neurotropic viruses, Europe (n = 48 laboratories)

Target Method Number of laboratories False-negativea

West Nile virus-specific
WNV 5‘-UTR/C Linke et al., 2007 [45]b 11 1 (lineage 2)
WNV NS2A Eiden et al., 2010 [46]b 2 None
WNV 3‘-UTR Tang et al., 2006 [47]b 1 None
WNV 3’UTR Lanciotti et al., 2000 [48]b 1 None
WNV E/NS1 Shi et al., 2001 [49]b 1 None
WNV NS3 Chaskopoulou et al., 2011 [50] 1 None
WNV various Own design 3 1 (lineage 1)
WNV unknown Altona RealStar (commercial)b 5 1 (lineage 2)
WNV unknown Qiagen Artus (commercial)b 3 1 (lineage 1)
WNV unknown Fast Track Tropical fever Core (commercial)b 3 1 (lineage 1)
WNV unknown Sacace (commercial)b 1 None
WNV unknown Amplisense (commercial)b 1 None
Pan-flavivirus
Pan-flavi NS5 Scaramozzino et al., 2001 [51] 7 None
Pan-flavi NS5 Sanchez-Seco et al., 2005 [52] 3 None
Pan-flavi NS5 Moureau et al., 2007 [53] 2 1 (lineage 1)
Pan-flavi NS5 Patel et al., 2013 [54] 2 None
Pan-flavi NS5 Briese et al., 1999 [55] 1 None
Pan-flavi NS5 Vina-Rodriguez et al., 2017 [56] 1 None
Pan-flavi NS5 Vazques et al., 2012 [57] 1 None
Pan-flavi unknown Own design 2 None
Pan-flavi unknown Genekam (commercial) 1 None
Pan-flavi unknown TibMolBiol (commercial) 1 None
Information not providedc 1 1 (lineage 1)

WNV: West Nile virus.
a WNV lineage missed indicated between brackets.
b Included in statistical analysis as classified as virus-specific real-time RT-PCR.
c Excluded from statistical analysis since cannot be classified as real-time RT-PCR or conventional RT-PCR.
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public health, have sympatric circulation (at least two 
of them) in several European countries and are indis-
tinguishable clinically. It is important to underline that 
most of the participating laboratories were not first-line 
routine laboratories but national reference laboratories 
[3]. The fact that samples were missed by laboratories 
is of concern as the samples had RNA loads within the 
average of clinical relevance and were not intended to 
be at the detection limit to evaluate sensitivity. Another 
worrisome observation is the fact that six of 51 par-
ticipating laboratories scored one or more of the viral 
RNA-negative samples positive, which is indicative of 
contamination issues and happened more frequently 
than in previous EQAs [21-23].
In our study, the total number of panels tested by 
each RT-PCR test did not allow statistically significant 
conclusions about specific methods that laboratories 
should be advised to use. Nevertheless, for TOSV and 
USUV, methods other than virus-specific real-time 
assays provided false-negative results more frequently 

than virus-specific real-time PCR tests. Although the 
same trend was not observed for WNV and TBEV, this 
could be taken into consideration by laboratories to 
improve the performance of their diagnostic capacity.

Because TOSV is endemic in countries surrounding the 
Mediterranean Sea, the majority of reference labora-
tories in Europe deal only with imported TOSV cases 
[24-28]. The neglected state of TOSV is reflected in the 
general absence of commercial tests, except for one 
which was used by one laboratory for the EQA panel. 
TOSV detection capacity had a geographical and lab-
oratory coverage comparable to USUV, i.e. 32 labora-
tories in 19 countries which included all participating 
countries with known TOSV circulation (Croatia, Cyprus, 
France, Greece, Italy, Portugal and Spain). Bosnia and 
Herzegovina and Kosovo*, two other European coun-
tries with TOSV activity, did not participate in the EQA. 
Three TOSV lineages circulate in Europe, two of which 
were represented in the EQA panel, i.e. lineages A 

Figure 3
Number of laboratories per country that provided results for Usutu virus, external quality assessment for molecular 
detection of emerging neurotropic viruses, Europe (n = 28 laboratories)
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and B. The third lineage, lineage C, has only recently 
been discovered in Greece and Croatia and could not 
be included in the panel because the virus isolate was 
not available at the time. Of the 32 laboratories that 
tested for TOSV, four laboratories in four countries 
missed the TOSV lineage B sample; another labora-
tory in a fifth country missed the lineage A sample. At 
RT-PCR test level, lineage A was missed with one test 
while lineage B was missed six times by five RT-PCR 
tests of which four were conventional RT-PCR meth-
ods, despite the fact that the samples had similar viral 
loads. Apparently some laboratories used systems that 
were not sensitive enough for detection of TOSV line-
age B strains, although this lineage is geographically 
most widely spread [4]. TOSV RNA loads provided in 
this EQA were in line with the virological findings in CSF 
[29-31,32,33]. The recent discovery of lineage C mer-
its attention and the capacity of currently described 
assays to detect such strains need to be verified; since 
virological and genetic characterisation of this lineage 
is ongoing in Greece, inclusion of this lineage will be 
possible in future EQAs. At the country level, three of 
the five laboratories that missed a TOSV RNA-positive 
sample were located in a country endemic for TOSV. 
Better insight into the capability of TOSV molecular 
detection in Europe should be obtained with a dedi-
cated EQA, including all three lineages at different viral 
loads, designed for a comparative evaluation of the 
RT-PCR methods described in the literature.

The widest geographical (32 countries) and laboratory 
(n = 48) coverage was for WNV testing. The WNV lineage 
1 sample was missed by five laboratories in five EU/

EEA countries that had never reported an autochtho-
nous WNV case, while WNV lineage 2 was missed by 
two laboratories in two EU/EEA countries, one of which 
is endemic for WNV lineage 2. This was the third EQA 
of molecular detection of WNV within EVD-LabNet and 
its predecessor ENIVD [22,23]. The long history of WNV 
capability assessments and surveillance in Europe is 
likely to explain the good scores observed with WNV.

In this panel, USUV was the most recent emerging 
virus with still accumulating evidence of its relevance 
for public health and an increasing geographical dis-
tribution [13]. This might explain why the testing capa-
bility for USUV had the smallest geographical coverage 
(n = 18 countries) and number of laboratories (n = 28 
laboratories). This was the first EQA that included 
USUV and there is no literature on clinically relevant 
viral loads in plasma. The concentration in this panel 
(1.6 × 104 copies/mL) was in the range of detected viral 
loads for the closely related WNV in plasma [34-36]. 
Looking at the currently known geographical distribu-
tion of USUV in Europe, all countries with USUV circula-
tion except Switzerland participated with USUV testing. 
The USUV-positive sample was missed by seven labo-
ratories in four EU/EEA countries. To gain better insight 
in the robustness of USUV detection in Europe, a dedi-
cated EQA including a concentration range of USUV 
genome copies in different matrices (whole blood, 
plasma and urine) is to be planned.

Although the geographical distribution of TBEV in 
Europe is broader than that of WNV and the total number 
of tick-borne encephalitis cases is higher, the number 

Table 5
RT-PCR methods used for Usutu virus RNA detection, external quality assessment for molecular detection of emerging 
neurotropic viruses, Europe (n = 28 laboratories)

Target Method Number of laboratories False-negative
Usutu virus-specific
USUV NS5 Nikolay et al., 2014 [58]a 11 1
USUV NS5 Cavrini et al., 2011 [59]a 5 none
USUV NS1 Jöst et al., 2011 [60]a 2 none
USUV NS5 Weissenböck et al., 2013 [61]a 1 none
USUV 3‘UTR Del Amo et al., 2013 [62]a 1 none
USUV unknown Own designb 4 none
Pan-flavivirus
Pan-flavi NS5 Scaramozzino et al., 2001 [51] 5 3
Pan-flavi NS5 Sanchez-Seco et al., 2005 [52] 3 3
Pan-flavi NS5 Patel et al., 2013 [54] 2 none
Pan-flavi NS5 Vina-Rodriguez et al., 2017 [56] 1 1
Pan-flavi NS5 Vazques et al., 2012 [57] 1 1
Pan-flavi unknown Own design 2 none
Pan-flavi unknown Genekam (commercial) 1 none

USUV: Usutu virus.
a Included in statistical analysis as classified as virus-specific real-time RT-PCR.
b Excluded from statistical analysis since cannot be classified as real-time RT-PCR or conventional RT-PCR.
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of laboratories participating with TBEV testing (n = 42) 
and their country coverage (n = 28) was smaller than for 
WNV. The TBEV sample was missed by four laborato-
ries in three countries, of which two display endemic 
presence of TBEV. This was the second EQA including 
molecular detection of TBEV within EVD-LabNet and its 
predecessor ENIVD [21]. However, overall results could 
not be compared as our EQA only assessed TBEV test-
ing based on one single RNA viral load.

Based on our results, we cannot give advice on what 
methods to use for the molecular detection of the four 
viruses. This requires assessment of the whole rou-
tine procedure from sample receipt to generation of a 
result. The performance in the EQA is a combination of 
the extraction method and the RT-PCR method used, 
as would routinely be the case when processing real-
life diagnostic samples. The set-up of the current EQA 
cannot assess the influence of the extraction method 
or RT-PCR system on the final outcome per sample. 
The background data provided by the participants 

indicated an important diversity of the methods used 
for nucleic acid extraction (19 methods). It was impos-
sible to link the extraction method to the quality of the 
results. To assess solely the quality of the RT-PCR, EQA 
panels consisting of extracted or synthetic RNA should 
be provided. Although our study was not designed to 
address the efficacy of the extraction technique per 
se, there are many arguments that favour automated 
extraction protocols over manual protocols. Automated 
extraction reduces the risk of cross-contamination, the 
turnaround and hands-on times, provide equivalent 
amounts of viral RNA and guarantee a better reproduc-
ibility compared with manual extraction [37–42]. EQA 
is an efficient tool to evaluate diagnostic procedures 
and to alert highlight where improvements are needed. 
Therefore, we recommend repeating the EQA for labora-
tories with unsatisfactory results, focusing at least on 
TOSV and USUV and investigating whether the required 
improvements are achieved. For these two viruses, we 
recommend real-time assays rather than classic or 
nested PCR protocols.

Figure 4
Number of laboratories per country that provided results for tick-borne encephalitis virus, external quality assessment for 
molecular detection of emerging neurotropic viruses, Europe (n = 42 laboratories)
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Conclusion
Early detection of neurotropic arboviruses allows for 
timely risk assessment and risk management measures. 
We observed wide variation in both extraction meth-
ods and RT-PCR tests, showing a profound absence of 
standardisation across European laboratories. Overall, 
the results were not satisfactory and indicated a need 
for improvement of capacity and capability. Testing for 
WNV and TBEV, for which EQAs had been organised 
previously, showed better results than testing for USUV 
and TOSV for which this EQA was the first. This trend 
is important to consider and suggests that EQA exer-
cises for TOSV and USUV should be repeated in order 
to assess whether successful improvements have been 
made.

*Note
This designation is without prejudice to positions on status, 
and is in line with UNSCR 1244 and the ICJ Opinion on the 
Kosovo Declaration of Independence
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Background: Tick-borne diseases have become 
increasingly common in recent decades and present a 
health problem in many parts of Europe. Control and 
prevention of these diseases require a better under-
standing of vector distribution. Aim: Our aim was to 
create a model able to predict the distribution of Ixodes 
ricinus nymphs in southern Scandinavia and to assess 
how this relates to risk of human exposure. Methods: 
We measured the presence of  I. ricinus  tick nymphs 
at 159 stratified random lowland forest and meadow 
sites in Denmark, Norway and Sweden by dragging 
400 m transects from August to September 2016, 
representing a total distance of 63.6 km. Using climate 
and remote sensing environmental data and boosted 
regression tree modelling, we predicted the overall 
spatial distribution of I. ricinus nymphs in Scandinavia. 
To assess the potential public health impact, we com-
bined the predicted tick distribution with human den-
sity maps to determine the proportion of people at 
risk. Results: Our model predicted the spatial distribu-
tion of I. ricinus nymphs with a sensitivity of 91% and 
a specificity of 60%. Temperature was one of the main 
drivers in the model followed by vegetation cover. 
Nymphs were restricted to only 17.5% of the modelled 
area but, respectively, 73.5%, 67.1% and 78.8% of the 
human populations lived within 5 km of these areas 
in Denmark, Norway and Sweden. Conclusion: The 
model suggests that increasing temperatures in the 
future may expand tick distribution geographically in 

northern Europe, but this may only affect a small addi-
tional proportion of the human population.

Introduction
Ticks are one of the most important vectors for path-
ogens, impacting a wide range of vertebrates, and 
transmit more pathogens than any other arthropod 
[1,2]. In Europe, the main vector for tick-borne patho-
gens is  Ixodes ricinus  [3,4], which is also the most 
common tick species in Scandinavia [3-5]. Over the 
last decades, the incidence and geographical range of 
tick-borne diseases have increased [3,6,7] and pose 
a risk to both human and animal health. Scandinavia 
constitutes the edge of the northern distributional 
range of I. ricinus [4]. The incidence of Lyme borreliosis 
(LB) and tick-borne encephalitis (TBE) is increasing in 
both Norway and Sweden [5,8-10]. In Norway, LB and 
TBE have mostly been reported along the coastline 
in the southern parts of the country [5,8]. However, 
tick-borne encephalitis virus (TBEV) has been found 
in I. ricinus nymphs as far north as ca 115 km from the 
Arctic Circle [11,12]. In Sweden, LB is widespread in the 
southern and eastern regions [4,13,14], whereas TBE is 
concentrated in the south-central and coastal regions, 
with the annual TBE incidence around Stockholm 
exceeding 4 per 100,000 inhabitants [9,10,15,16]. In 
Denmark, LB seems endemic and widespread [3], 
whereas TBEV-infected ticks have only been confirmed 
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Figure 1
Stratification of the study area, showing 159 sample sites and presence/absence of Ixodes ricinus nymphs, Denmark, Norway 
and Sweden, 15 August–30 September 2016

Forest, low NDVI
Forest, high NDVI
Meadow, low NDVI
Meadow, high NDVI
Lakes, rivers and streams
Altitudes > 450 m
Other
Nymph absence

Nymph presence

NDVI: normalised difference vegetation index.

Forest includes the cover types: broad-leaved forest, coniferous forest and mixed forest. Meadow includes: land principally occupied by 
agriculture with significant areas of natural vegetation, natural grasslands, moors and heathland, and transitional woodland-shrub. The lines 
divide each country into equally sized northern and southern strata. Only parts of Norway and Sweden were included in the field study for 
logistic reasons.
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on the island of Bornholm and at one emerging site in 
northern Zealand with two human cases [17,18].

The increase in incidence and geographical range of 
pathogens and their tick vector is likely to be a combi-
nation of several factors, e.g. climate and availability of 
host species [6,7], which all affect the ticks’ life cycle 
and therefore their distribution and the possibility of 
tick-borne diseases being present in specific regions 
[7,19]. Many hard ticks, as  I. ricinus, are sensitive to 
climate and weather [1,6], and are restricted to live in 
areas with high rainfall and vegetation that keeps a 
humidity of at least 80%, to prevent desiccation when 
the ticks are off-host [1,7]. Knowing the distribution of 
ticks may help pinpoint potential risk areas for disease 
transmission and guide health authorities in determin-
ing where to focus surveillance efforts, where to use 
preventive measures, or where to put emphasis on 
informing people.

Determining tick distribution can be a difficult 
task depending on the size of the area of interest. 
Throughout Scandinavia, there have been several 
field studies on ticks and their associated pathogens 
[3,8,12,20-24], but in order to predict tick presence 
in unsampled regions in the present but potentially 
also for the future, we need repeatable survey meth-
ods and to find factors associated with tick abundance 
that can aid us in developing models with high predic-
tive power. In Norway, Jore et al. [2] used sheep serum 
antibody-positive for tick-borne  Anaplasma phagocy-
tophilum  as a proxy for tick presence, finding effects 
of temperature, abundance of large cervids and farm 
animals as well as land cover on tick distribution. 
Studies in Sweden found significant effects of climate, 
vegetation parameters and length of vegetation period 
on tick abundance and distribution [13,14]. In Denmark, 
Jensen [23] found that I. ricinus nymph abundance was 
significantly affected by the interaction between soil 
water capacity and the number of hunted roe deer. 

Table 1
Environmental predictors used in the boosted regression tree models to predict probability of the presence of Ixodes 
ricinus nymphs in the modelled Scandinavian region, Denmark, Norway and Sweden, 15 August–30 September 2016

Source Variables
Modis (Fourier transformed), 2001–12a [44] Middle infra-red

Daytime land surface temperature
Night-time land surface temperature

Normalised difference vegetation index (NDVI)
Enhanced vegetation index (EVI)

WorldClim 1.4, 1960–90 [49] Altitude
BioClim (WorldClim), 1960–90 [49] BIO1: Annual mean temperature

BIO2: Mean diurnal range (mean of monthly (max–min temperature))
BIO3: Isothermality (BIO2/BIO7) × 100

BIO4: Temperature seasonality (standard deviation × 100)
BIO5: Max temperature of warmest month
BIO6: Min temperature of coldest month

BIO7: Temperature annual range (BIO5–BIO6)
BIO8: Mean temperature of wettest quarter
BIO9: Mean temperature of driest quarter

BIO10: Mean temperature of warmest quarter
BIO11: Mean temperature of coldest quarter

BIO12: Annual precipitation
BIO13: Precipitation of wettest month
BIO14: Precipitation of driest month

BIO15: Precipitation seasonality (coefficient of variation)
BIO16: Precipitation of wettest quarter
BIO17: Precipitation of driest quarter

BIO18: Precipitation of warmest quarter
BIO19: Precipitation of coldest quarter

Harmonized World Soil Database v 1.2 (FOA, IIASA), 
2009 [50]

Soil types, depicted by Soil Mapping Unit Code of major soil group (FAO-90 soil 
classification system)

Gridded Population of the World Dataset (SEDAC), 2015 
[47]

Population counts per 1 km2

a For each variable, the Fourier processing output includes mean, minimum, maximum, variance in raw data, combined variance in annual, bi-
annual, and tri-annual cycles as well as amplitude, phase and variance of annual, bi-annual and tri-annual cycle.

All predictors come as raster files with a resolution of 1 km2.
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Several other studies from Europe and North America 
have also found a link between environmental factors 
and tick distribution, such as temperature, vegetation 
indexes and vapour pressure [25-27].

Although climate, land cover and host abundance may 
all play a role in tick distribution, it can often be diffi-
cult to obtain extensive data on host species, whereas 
environmental, weather and climate data are more 
readily available from satellite images and weather 
models. Machine learning techniques are increasingly 
used in developing models for vector predictions as 
they are flexible, can account for nonlinearity and inter-
actions and can handle different types of predictor var-
iables, such as satellite images of environmental data 
[28,29]. Machine learning techniques combined with 
environmental predictors have been used in modelling 
biting midges (Culicoides sp.) [30-33], and mosquitoes 
[28,34,35], and studies on ticks include modelling tick 
distribution or abundance [36-38] as well as the distri-
bution of tick-borne human diseases [15,39].

The risk of human exposure to ticks, and potentially 
tick-borne diseases, depends on tick and host dynam-
ics as well as human behaviour [40]. Several studies 
have reported that living in areas in close proximity to 
forest increases the risk of LB or TBE [41-43] as  I. rici-
nus is more abundant in forest habitats [21,40].

We here present a novel map of nymphal  I. rici-
nus  distribution for Scandinavia using machine learn-
ing algorithms applied to field data, collected in a strict 
standardised design in the period from 15 August to 30 
September 2016. Furthermore, we relate our modelling 
results of tick distribution to public data on human 
population density and to the distance to the predicted 
suitable tick habitats, in order to assess the potential 
public health impact.

Methods

Stratification of study region and site selection
This study was part of a larger study, where addi-
tional objectives were to measure tick abundance and 
collect nymphs for pathogen detection in Denmark, 
Norway and Sweden. The field collection region for  I. 
ricinus  nymphs was for logistical reasons limited 
to 274,660 km2  including all of Denmark, southern 

Norway and southern Sweden as well as the Swedish 
eastern coastal zone (Figure 1). Within this area, we 
excluded all altitudes of 450 m above sea level and 
higher (19,926 km2), where ticks are rare or absent [5]; 
these altitudes were also excluded from the final pre-
diction map.

We stratified the remaining land area (234,191 km2, 
excluding lakes and waterways) using Fourier pro-
cessed satellite imagery of the normalised difference 
vegetation index (NDVI) [44] and Corine land cover data 
(1 km2  resolution) [45] to define forest and meadow 
habitats. Other land cover categories were not sampled 
for ticks and were left out of the prediction map. For 
details about the stratification and Fourier-processed 
satellite imagery, see the Supplement.

We randomly selected 30 first-priority sample sites 
(80% forest and 20% meadow,  Supplementary Table 
S2) in each of the three countries (R 3.4.2 [46] and 
sampleStratified in the raster package). This number 
was logistically the maximum number of sites feasible 
to visit within a reasonable timeframe. We decided to 
collect 80% of the samples from forested areas, as for-
est areas are the most important tick habitat [21,40]. 
Furthermore, 10 alternative sites for each first-priority 
site were randomly selected in the same stratum and 
ordered in priority after shortest distance to original 
site. These alternative sites were created in case of 
problems with access to the priority area or difficulties 
collecting nymphs (for pathogen detection). If a prior-
ity area could not be sampled, we would move on to 
the first alternative site and so forth, keeping the abun-
dance data from the original site if available. For each 
meadow site, we additionally created 10 alternative for-
est sites, to be sampled should it prove impossible to 
collect ticks in meadows.

Because we were interested in investigating tick abun-
dance along the Oslo Fjord in detail, we chose a further 
20 random sites along the fjord (maximum distance of 
800 m from the coast), with 10 alternatives for each 
of the 20 sites (same setup as above,  Supplementary 
Table S3).

Field study
For logistical reasons, we conducted the field study 
between 15 August and 30 September 2016. We 

Table 2
Number of sites surveyed and data on presence/absence of Ixodes ricinus nymphs, Denmark, Norway and Sweden, 
15 August–30 September 2016

Country Total number of sites 
surveyed

Number of sites with presence of Ixodes 
ricinus nymphs

Number of sites with absence of Ixodes 
ricinus nymphs

Denmark 37 32 5
Norway 47 38 9
Sweden 75 55 20
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measured tick abundance during the day between 
11:00 and 16:00, using a 100 m north- and a 100 m 
east-facing transect, meeting at a 90° angle at one end. 
We sampled for questing  I. ricinus  ticks by dragging 
a white flannel cloth (1.05 × 1.15 m, containing lead 
weights at one end) 100 m along each transect, turning 
and dragging it 100 m back; we removed and counted 
larvae, nymphs, adult male and adult female ticks 
every 50 m. As some sites had very low abundance of 
nymphs or none, an alternative site with lower priority 
was chosen for nymph collection, while keeping abun-
dance data from the original sites, thus resulting in a 
different number of sites with abundance measures per 
country. If one or more nymphs were found on the two 
transects, the site was classified as ‘nymph presence’ 
else it was classified as ‘nymph absence’.

Presence/absence modelling
We developed a boosted regression tree (BRT) predic-
tion model on the presence/absence data for nymphs, 
using 92 environmental predictors (Table 1). BRT is a 
machine learning technique based on two algorithms: 
regression trees and gradient boosting [29]. This tech-
nique allows predictions of a response variable, in our 
case presence/absence. The estimated probability of 
presence (PP) can then be plotted as a risk map with a 
resolution of 1 km2. For additional details regarding the 
environmental predictors, the BRT method used, bal-
ancing of the data and cross validation of the model, 
see the Supplement.

The MODIS-derived data (Table 1) stem from time 
series data (12 years), whereas our field sampling only 
occurred in the year 2016. However, at any given time, 
the abundance and presence of  I. ricinus  instars are 
influenced by environmental conditions in previous 
years (adult females surviving to lay eggs, survival of 
eggs during winter, prolonged diapause of nymphs and 
larvae) and are not just dependent on the environmen-
tal conditions in the collection year. Time series data 
provide us with data on seasonality and the potential 
range of the environmental variables, allowing us to 
make more general predictions on I. ricinus distribution 
in southern Scandinavia.

Human risk of tick exposure
After identifying a final prediction map, we used the 
Gridded Population of the World dataset (raster with 1 
km2resolution [47], Table 1), to identify the number of 
people living in areas within various distances to for-
est and meadows where the PP was higher or equal to 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. 
We chose distances from 1 km to 5 km to depict peo-
ple living in close proximity to potential tick habitats. 
Details can be found in the Supplement.

Results

Field study
We measured tick abundance at 37 sites in Denmark, 
75 sites in Sweden and 47 sites in Norway. The 159 

sites constitute 63.6 km of dragged transects (Table 
2, Figure 1).

Presence/absence modelling
The final BRT model had an accuracy of 0.85, a sen-
sitivity of 91% and a specificity of 60% (given a 
fixed cut-off of 50% PP). The area under the curve 
for the receiver operating characteristic was 0.86 
(Supplementary Figure S2) [29]. As specificity was 
only 60% (with the default PP cut-off of 50%), we plot-
ted the prediction errors (observed data – mean pre-
dicted probability of presence over the folds and the 
repeats) in order to visualise a potential spatial pattern 
(Supplementary Figure S3). From the spatial map, we 
concluded that the low specificity was mainly due to 
sites in Denmark and Norway (close to the Swedish 
border). The final prediction map encompassed 100%, 
68.4% and 85.8% of Denmark, Norway and Sweden’s 
total land area, respectively (Figure 2). We only made 
predictions for forest and meadow habitats that corre-
sponded to our sampling sites. Habitats with at least 
50% PP of tick nymph presence (17.5% of the total mod-
elled area) constituted 15.7% of Denmark’s, 7.4% of 
Norway’s and 23.9% of Sweden’s land area within the 
modelled region. Assuming that tick presence in the 
areas of northern Norway and Sweden not included in 
the modelled region was below 50% PP, the percentage 
of a predicted tick risk of at least 50% was 5.1% and 
20.5% of the total land area of Norway and Sweden, 
respectively. 

The most important predictors in the final model were 
day- and night-time land surface temperatures and 
other parameters related to temperature, land cover 
(lower PP in transitional woodland-shrub compared 
with the other cover types), the middle infrared index 
and related parameters, and parameters related to the 
vegetation indices enhanced vegetation index (EVI) and 
NDVI (see plots of the top 5 predictors, Supplementary 
Figure S4).

Human risk of tick exposure
The modelled region incorporating all altitudes 
included 19.4 million people, with 5.5 million (28.4%), 
4.5 million (23.2%) and 9.4 million (48.5%) in Denmark, 
Norway and Sweden, respectively, which corresponded 
to 100% of the total Danish population, 91% of the total 
Norwegian population and 97% of the total Swedish 
population (based on the population density raster 
file). The proportion of people living within 1 km of for-
est and meadow was consistently lower for Denmark 
(ranging from 11% to 7% with increasing PP) than for 
Norway (ranging from 37% to 13% with increasing PP) 
and Sweden (ranging from 37% to 26% with increasing 
PP) for all PP values (Figure 3). This number increased 
consistently as distance to forest and meadow reached 
5 km with 76–61%, 88–44% and 85–73% of the regional 
population living within 5 km of forest or meadow with 
PP values ranging from 0.1 to 0.9 for Denmark, Norway 
and Sweden, respectively (Figure 3).  Figure 4  depicts 
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Figure 2
Predicted probability of presence of nymphal Ixodes ricinus, produced by the final boosted regression tree model, Denmark, 
Norway and Sweden, 15 August–30 September 2016
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This map depicts the predicted region (100%, 68.4% and 85.8% of Denmark’s, Norway’s and Sweden’s total land area). White areas within 
Denmark, Norway and Sweden are altitudes above 450 m or lakes, rivers and streams, or habitats other than our sampled forest and meadow 
habitats (not predicted).
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areas where people live within 1, 3 and 5 km of forest 
or meadow for a fixed PP value of 50%. 

Discussion
Using the machine learning technique Boosted 
Regression Trees, we were able to create maps of 
the probability of nymphal  I. ricinus  presence in 
Scandinavia with high predictive power based on a 
standardised repeatable procedure. The predicted 
distribution corresponded well with what is generally 
believed about tick distribution in Scandinavia, assum-
ing that a PP lower than 50% is a true absence. The 
higher probabilities of presence around the southern 
Norwegian coast line is in agreement with the distri-
bution maps known for Norway [5,24]. In Sweden, we 
found higher PPs in the southern parts, with a bound-
ary north of the large lakes, above which PP was low. 
This border coincides well with the biogeographical 
and climatic boundary called Limes Norrlandicus (LN) 
that separates the species-rich boreo-nemoral zone 
with shorter and milder winters in the south, from the 
boreal zone in the northern parts of Sweden [48]. Before 
the 1980s, LN used to be the range limit for I. ricinus in 
Sweden [4], but since then, the range of  I. ricinus has 
expanded beyond this biogeographical border albeit at 
low abundances [4]. Our model reflected this pattern, 
showing higher PP below LN and a quick drop in PP 

above LN, but with a low PP throughout this northern 
region. The distinct patches of low PP below the great 
lakes in Sweden follow observed lower temperatures at 
these two elevated areas (Supplementary Figure S5). 
The PP was high throughout Denmark, except for the 
dry heathlands and sandy habitats of central and west-
ern Jutland. This pattern corresponds well with what 
we know about tick biology and the need for a high 
relative humidity to sustain ticks in a given habitat [7].

Our model had low specificity compared with the sensi-
tivity. Since the main priority of this study was predic-
tion of true presences, we refrained from increasing the 
specificity, which could have been obtained by choos-
ing a higher cut-off value than the fixed 50%. In gen-
eral, certainty of true absence can be hard to obtain, 
as presence/absence is always dependent on the sam-
pling effort. Our recorded absences may not have been 
true absences and our model may still have predicted 
presence based on the environmental variables for that 
specific site. Conversely, high local abundance of deer 
hosts may facilitate establishment of ticks in areas for 
which the model predicted absence. In our data, we had 
a low proportion of absences (21%) and for Denmark 
alone, this number was 15.6%. Even though we used 
balancing methods to account for this disproportion, it 
is possible that our empirically collected sample could 

Figure 3
Percentage of people in the predicted region living within 1, 2, 3, 4 and 5 km of forest and meadow with different cut-offs 
for probability of presence of nymphal Ixodes ricinus, Denmark, Norway and Sweden, 15 August–30 September 2016
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not feed the model with enough absence data to learn 
how to accurately predict absences, thus resulting in 
low specificity.

We were able to create a model with high predictive 
power based on environmental predictors. We found 
that land surface temperatures as well as measures of 
high vegetation cover (middle infrared light is absorbed 
by leaves and vegetation, thus densely vegetated areas 
reflect less middle infrared light) positively influenced 
the probability of nymph presence. However, the result-
ing modelled distribution may be due to other environ-
mental factors correlated with these predictors, such 
as the climatic impact on vegetation and host species. 
Although ticks can be directly affected by tempera-
tures and humidity [1,4,6,7], they are also dependent 
on their host species for survival and dispersal [4,7,9]. 
Abundance of host species may in turn be directly and 
indirectly affected by climate and weather [4,7,13], 
thus making it hard to separate factors into causal and 
confounding. Despite lacking fine resolution data on 
host abundance, we were able to use environmental 

predictors to create a biologically plausible model for I. 
ricinuspresence/absence in Scandinavia.

Overlaying our distribution maps for tick nymphs with 
human population density maps revealed the propor-
tion of people potentially at risk for tick exposure. 
Based on studies estimating the risk of LB or TBE in 
relation to landscape characteristics around residen-
tial homes [41-43], we set the maximum distance from 
forest or meadow to 5 km. In general, we found that 
a large percentage of the population in the region 
live within 5 km of forest and meadows with a risk of 
tick presence, even if we set the cut-off for PP to be 
higher than the default 50%. Particularly for Norway, 
our model predicted high probability of nymph pres-
ence only for a very small area around the coast line; 
with a 50% PP cut-off, this area amounted to just 
5.1% of Norway’s total land area. Whereas this small 
area seems negligible, human population densities in 
Norway are relatively higher in these areas, exposing 
more people to tick habitats than we would expect by 
looking at the area alone, as 67% of the Norwegian 
population live within 5 km of forest and meadow 

Figure 4
Areas with people living at different distances to forest/meadow that have a probability of presence of nymphal Ixodes 
ricinus of at least 50%, Denmark, Norway and Sweden, 15 August–30 September 2016
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with PP ≥ 50%. That changing the PP cut-off value had 
a larger effect on the percentage of people at risk in 
Norway compared with Denmark and Sweden is prob-
ably due to a steep temperature gradient as we move 
away from the coast, caused by elevation-dependent 
temperatures (Supplementary Figure S5).

In the United States, Glass et al. [42] found that the 
odds of contracting LB increased within ca 1 km of liv-
ing close to forested habitats. The proportion of people 
living within 1 km of forest or meadow is particularly 
low for Denmark no matter the PP cut-off (11–7%). This 
may however be a gross underestimation of exposure 
risk as Denmark has many fragmented small forest 
patches interspersed with agricultural fields and urban 
areas and these small patches may not show up in our 
coarse resolution of 1 km2. However, little is known 
about how likely these non-sampled areas are as tick 
habitats. In Norway and Sweden, a higher proportion 
of the population (between 37% and 13% at different 
PP cut-off values) are living within 1 km of forest or 
meadow.

This study showed that given the current distribution 
of ticks in Scandinavia, a high percentage of inhabit-
ants are already exposed to the risk of tick bites (within 
a distance of 5 km to forest or meadow with a 50% PP, 
respectively 73.5%, 67.1% and 78.8% of the Danish, 
Norwegian and Swedish population may be at risk). The 
northward expansion of ticks and tick-borne pathogens 
in Norway and Sweden is a considerable public health 
concern [9]. However, human population densities in 
northern Norway and Sweden are low compared with 
the southern regions, and a tick range expanding north 
will therefore affect a smaller proportion of the human 
population. Our results therefore suggest that it may 
be desirable to target our surveillance and preventive 
measures in areas with high human population density 
and where ticks are well established, i.e. the whole of 
Denmark, the southern coastal parts of Norway, south-
ern Sweden and Sweden’s densely populated eastern 
coast along the Bothnian Bay.

Machine learning techniques allowed us to produce 
models and maps with high accuracy and predictive 
sensitivity for the whole region without having to sam-
ple every habitat. These models have highlighted areas 
at high risk of tick exposure and thus potentially of 
vector-borne diseases, and can help in targeting these 
areas for costly surveillance and preventive meas-
ures. It is important to note that our model reflects a 
moment in time, and does not show annual variation 
in tick distribution or how a future potential increase 
in temperatures may affect tick distribution and thus 
the potential for human exposure. Still, the study 
design is consistent between sites and repeatable, 
ensuring reliable future comparisons of tick distribu-
tion, and the produced maps allow for easy external 
validation. The resolution used to create our models 
may be too coarsely grained to catch small hotspots 
of tick presence/absence and the potential for human 

exposure. This is particularly evident for Denmark, 
which, throughout the country, has numerous small 
forest fragments smaller than 1 km2.
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Since 2012, tick-borne encephalitis (TBE) is a notifi-
able in the European Union. The European Centre for 
Disease Prevention and Control annually collects data 
from 28 countries plus Iceland and Norway, based 
on the EU case definition. Between 2012 and 2016, 
23 countries reported 12,500 TBE cases (Ireland and 
Spain reported none), of which 11,623 (93.0%) were 
confirmed cases and 878 (7.0%) probable cases. Two 
countries (Czech Republic and Lithuania) accounted for 
38.6% of all reported cases, although their combined 
population represented only 2.7% of the population 
under surveillance. The annual notification rate fluc-
tuated between 0.41 cases per 100,000 population in 
2015 and 0.65 in 2013 with no significant trend over 
the period. Lithuania, Latvia and Estonia had the high-
est notification rates with 15.6, 9.5 and 8.7 cases per 
100,000 population, respectively. At the subnational 
level, six regions had mean annual notification rates 
above 15 cases per 100,000 population, of which five 
were in the Baltic countries. Approximately 95% of 
cases were hospitalised and the overall case fatal-
ity ratio was 0.5%. Of the 11,663 cases reported with 
information on importation status, 156 (1.3%) were 
reported as imported. Less than 2% of cases had 
received two or more doses of TBE vaccine.

Background
Tick-borne encephalitis (TBE) is an infectious disease of 
the central nervous system caused by a flavivirus and 
usually transmitted by the bite of infected  Ixodes spp. 
These ticks can be found from western Europe to Japan 
[1]. Less frequently, humans can be infected by drink-
ing contaminated milk. Many vertebrate species can be 
infected by the TBE virus but ticks are the main reservoir 
for the virus. There are three subtypes of the TBE virus: 
the European subtype (TBEV-Eu) is mainly transmitted 
by  I. ricinus  while both the Far-eastern (TBEV-FE) and 
Siberian (TBEV-Sib) subtypes are mainly transmitted 
by I. persulcatus. Recent findings from Finland suggest 
that I. ricinus can also transmit TBEV-Sib [2]. In Europe, 

most cases are infected by TBEV-Eu but cases infected 
with TBEV-FE were reported in Estonia and Latvia [1] 
and with TBEV-Sib in Estonia [3] and Finland [4].

The typical course of the disease is biphasic. After a 
median incubation period of 8 days, the first stage 
consists of a few days of non-specific symptoms such 
as fever, fatigue and body pain. After a symptom-free 
week, approximately one-third of infected persons can 
develop neurological conditions [5], ranging from mild 
meningitis to severe encephalitis [1]; increasing age 
is a known risk factor for severe TBE. Infection with 
TBEV-FE is associated with more severe disease with 
case fatality as high as 20–40% compared with 1–2% 
with TBEV-Eu [6].

There is no curative treatment for TBE but a vaccine is 
available. This vaccine is highly immunogenic [7] and 
the impact of mass vaccination in Austria is suggestive 
of good effectiveness [8]. Vaccine schedules for the two 
vaccines licensed in Europe based on TBEV-Eu strains 
require three doses followed by boosters [1]. In a posi-
tion paper on TBE vaccination published in 2011, the 
World Health Organization (WHO) recommended that 
TBE vaccination should be offered to all age groups 
in highly endemic areas (i.e. areas with TBE incidence 
above 5 cases per 100,000 population) [9].

In Europe, most cases occur during June-September 
[10]. Ixodes spp. are found in large parts of Europe but 
areas at risk for TBE are mainly located in central and 
eastern Europe and the Baltic and Nordic countries [11]. 
Between 2000–2010, the annual number of TBE cases 
reported in the European Union and European Economic 
Area (EU/EEA) fluctuated between 2,000–3,500 cases 
[11,12]. Spikes in cases of TBE have occurred in some 
years, e.g. 2006, but this was likely a result of changes 
in human behaviour based on suitable weather condi-
tions (e.g. increased outdoor recreational activities) 
[13]. More recently, some countries, e.g. Belgium and 
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the Netherlands, reported possible new endemic foci 
having found antibodies to the TBE virus in roe deer 
and cattle [14,15] and in 2016, the Netherlands reported 
their first locally-acquired human case [16]. The map-
ping of endemic foci is essential to make recommen-
dations for vaccination programme and travel advice 
[17]. In 2011, the first attempt to collect TBE surveil-
lance data at the EU/EEA level underlined the need for 
an agreed case definition and systematic data collec-
tion [11]. Therefore, in 2012, the European Commission 
included TBE in the list of notifiable diseases in the EU/
EEA [17].

Here, we describe TBE cases reported in the EU/EEA 
between 2012 and 2016.

Methods
Since 2012, the European Centre for Disease Prevention 
and Control (ECDC) requires all 28 EU Member States, 
plus Iceland and Norway, to annually report their TBE 
data to the European Surveillance System (TESSy) 
database using the EU case definition (Box) [18]. More 
detailed information on surveillance systems is avail-
able elsewhere [10]. We included all cases reported 
during the years 2012–2016 meeting the EU case defi-
nition in the analysis.

TBE Information received included age, sex, date of 
disease onset, probable place of infection, place of 
residence, importation status, hospitalisation status, 
vaccination status, and clinical outcome. Coded values 

for variables with geographical information (probable 
place of infection and place of residence) followed the 
nomenclature of territorial units for statistics (NUTS) of 
the EU [19].

We used population denominator data provided by 
the Statistical Office of the EU (Eurostat) for calculat-
ing rates (data extracted on 22 September 2017). We 
compared continuous variables by the Mann–Whitney 
U test and categorical variables using the chi-squared 
test. We estimated annual rates of change and their 
95% confidence intervals (CI) using a log-linear regres-
sion of notification rates over the period 2012–2016. 
We assessed goodness of fit of linear regressions 
using F statistics. We used Stata software release 14 
(StataCorp. LP, United States) for all data management 
and statistical analyses.

Results

Case classification and notification rate
Over the 2012–2016 period, 23 countries reported 
12,500 TBE cases (Ireland and Spain reported no 
cases), of which 11,622 (93.0%) were confirmed cases 
and 878 (7.0%) probable cases (Table 1). We excluded 
31 cases with unknown classification (11 cases for 
Austria, 15 cases for Lithuania, four cases for Poland 
and one case for Slovenia). Cyprus, Iceland, Malta, and 
Portugal had no TBE surveillance and Denmark did not 
report any data.
Most countries (18/23) reported over 90% of cases as 
confirmed. Slovakia (552/638; 86.5%), France (36/44; 
81.8%), Hungary (131/171; 76.6%), Latvia (683/953; 
71.7%), and Poland (712/1,040; 68.5%), classified 
the lowest proportions of their cases as confirmed. 
The mean annual notification rate was 0.54 cases per 
100,000 population.

Importation
Of the 11,664/12,500 cases reported with informa-
tion on importation status, 156 (1.3%) were reported 
as imported (Table 1). Importation status was missing 
for cases reported by Bulgaria, Croatia, and Finland. 
All cases reported in Belgium, Luxembourg, and the 
United Kingdom (UK) were imported. Information on 
the probable country of infection was available for 152 
of these imported cases (97.4%). Top destinations for 
travel-associated TBE were Austria (32 cases, 21.1% 
of all imported cases), Sweden (19 cases, 12.5%) and 
Finland (18 cases, 11.8%). Four countries (the Czech 
Republic, Germany, Lithuania, and Sweden) reported 
102/156 (65.3%) of all imported cases. Imported cases 
were slightly younger than locally-acquired cases 
(median age for imported cases: 46 years; locally-
acquired cases: 48 years; p = 0.03) and more likely to 
be male (imported cases: 71% males; locally-acquired 
cases: 59% males; p < 0.01).

Geographical distribution
Two countries (Czech Republic and Lithuania) accounted 
for 4,825/12,500 (38.6%) of all reported cases (Table 1). 

Box  
European Union case definition for tick-borne 
encephalitis

A confirmed case is defined as any person meeting the 
clinical criteria i.e. symptoms of inflammation of the central 
nervous system

AND

• Has laboratory-confirmation i.e. at least one of the 
following five:

• Tick-borne encephalitis (TBE) specific IgM and IgG 
antibodies in blood.

• TBE specific IgM antibodies in cerebrospinal fluid.

• Sero-conversion or fourfold increase of TBE-specific 
antibodies in paired serum samples.

• Detection of TBE viral nucleic acid in a clinical specimen.

• Isolation of TBE virus from clinical specimen.

A probable case is defined as any person meeting the 
clinical criteria and the laboratory criteria for a probable 
case i.e. detection of TBE-specific IgM-antibodies in a 
unique serum sample

OR

Any person meeting the clinical criteria with exposure to a 
common source (unpasteurised dairy products).
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Of the 23 countries that reported cases, 16 had mean 
notification rates below one case per 100,000 popula-
tion. Over the 2012–2016 period Lithuania, Latvia and 
Estonia had the highest notification rates with 15.6, 
9.5 and 8.7 cases per 100,000 population, respec-
tively (Table 1  and  Figure 1). Among the 23 countries 
that reported cases, 17 had locally-acquired cases. Of 
these, 12 provided geographical information at NUTS3 
level, two at NUTS2 (Austria and Poland), and three 
did not have information at subnational level (France, 
the Netherlands, and Norway) (Figure 1). At the subna-
tional level, six regions had mean annual notification 
rates above 15 cases per 100,000 population: Utena 
county, Lithuania (44.5), Lääne-Eesti, Estonia (27.7), 
Kurzeme, Latvia (23.8), Alytus county, Lithuania (22.1), 
Panevėžys county, Lithuania (19.1) and Carinthia, 
Slovenia (15.1) (Figure 1).Twenty-nine regions in seven 
countries (Estonia, Germany, Latvia, Lithuania, Poland, 
Slovenia and Sweden) had notification rates above 
five cases per 100,000 population. In Lithuania, Telšiai 
County was the region with the lowest mean annual 
notification rate (5.6). 

Trend and Seasonality
The overall annual notification rate fluctuated between 
a minimum of 0.41 cases per 100,000 population in 
2015 and a maximum of 0.65 in 2013 with no signifi-
cant trend over the period (annual variation of -  6.6% 
(95% CI: -  29.1 to 16; p  =  0.4) (Table 1). We observed 
significant trends for three countries: the TBE notifica-
tion rate increased at an annual rate of 14.4% (95%CI: 
0.7 to 28.1) in Finland and 77.3% (95%CI: 42.0 to 112.7) 
in France and decreased at an annual rate of 24.5% 
(95%CI: 6.1 to 42.9) in Hungary.

Of the 11,397 cases reported with onset date, 10,632 
(93.3%) had an onset month May–October and 135 
(1.2%) had an onset month December–March (off-sea-
son) (Figure 2). We observed a comparable seasonal-
ity in the 12 countries reporting at least 100 cases over 
the period with onset month (Figure 3). There were 
peaks in 2012 (Estonia and Sweden), 2013 (Germany, 
Hungary, Slovakia, Czech Republic and Slovenia), 2014 
(Austria), 2015 (Austria, Estonia, Finland, Sweden), and 

Figure 1
Rate of locally acquired tick-borne encephalitis per 100,000 population, by place of infection, European Union and 
European Economic Area countries, 2012–2016
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2016 (Czech Republic, Germany, Lithuania, Poland and 
Slovakia). 

Demographics
Of the 12,470 cases reported with information on age, 
6,782 (54.4%) were in the 40–69 years old group (Table 
2). TBE was more common in males with a male-to-
female rate ratio of 1.5:1. Notification rates increased 
with age in both sexes, peaking at 0.89 cases per 
100,000 population in males aged 60–69 years, and 
then decreased in older age groups (Figure 4). At date 
of disease onset, females (median 51 years, interquar-
tile ratio (IQR): 35–62) were older than males (median 
47 years, IQR: 31–61) (p < 0.01).

Outcome
Of the 8,081 cases reported with hospitalisation sta-
tus, 7,672 (94.9%) were admitted to hospital (Table 2). 
Of the 9,889 cases reported with known outcome, 48 
(0.5%) died and 247 (2.5%) had neurological sequelae. 
The case fatality ratio did not differ significantly by 
sex (0.5% in males vs 0.4% in females, p = 0.30). The 
case fatality ratio was higher in older age groups (3.1% 
in cases aged 80 years or older, 2.0% in cases aged 
70–79 years and < 0.5% in cases aged below 70 years).

Vaccination
Of the 5,205 cases with known vaccination status, 
5,066 (97.3%) were not vaccinated, 60 had received 
one or two doses (1.2%), 60 (1.2%) three doses or more 
and 19 (0.4%) an unknown number of doses (Table 2). 
Of the 20 cases with fatal outcome and known vac-
cination status, 19 were not vaccinated and one had 
received one dose of the vaccine. The proportion of 
cases that received two doses or more of vaccine was 
higher in the extreme age groups compared with the 
other groups (2.5% in both cases aged 20 years or 
younger and 70 years or older). No imported cases had 
received more than one vaccine dose.

Discussion
The European TBE surveillance data suggest a sta-
ble trend over the years 2012–2016 with no reported 
changes in national surveillance systems; continuing 
the long-term trend observed in Europe since the mid-
1990s [12]. The number of TBE cases reported in Europe, 
excluding Russia, increased over the years 1990–1994, 
probably reflecting the start of surveillance in many 
countries [12]. Over the following 15 years (1995–2009), 
the trend was stable with an annual number of TBE 
cases fluctuating between 2,000 and 4,000 cases. 
Peaks occurred when a set of countries reported unu-
sually high numbers of TBE cases, e.g. 2006 and 2009 
[12]. In 2013, several European countries experienced 

Figure 2
Number of reported tick-borne encephalitis cases by month of onset, and 12-month moving average, 19 European Union 
and European Economic Area countries, 2012–2016
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a peak in TBE cases, which resulted in the highest 
number of TBE cases (> 3,000) observed in Europe that 
year. An analysis carried out in eight European coun-
tries suggested that human behaviour in response to 
good weather conditions, e.g. increased outdoor rec-
reational activities, was the main explanation for the 
2006 spike rather than tick abundance [13].

The overall stable trend observed in TBE surveillance 
data is mainly driven by a few countries reporting the 
majority of cases, potentially masking important dis-
parities both between and within countries. For exam-
ple, two countries (Czech Republic and Lithuania) 
accounted for 38.6% of all reported TBE cases, 
although their combined population represented only 
2.7% of the population of the 25 countries included in 
this analysis. All countries with average annual noti-
fication rate above one TBE case per 100,000 popu-
lation had a stable trend over the period. We only 
observed an increase in Finland and France. In France, 

the notification rate almost tripled in 2016 compared 
with previous years in the Alsace region where most 
cases occurred [20]; some newly identified foci such 
as the Alpine region could also have contributed to 
the upsurge in cases. However, the reasons behind 
this increase are yet to be determined. In Finland, the 
emergence of new foci reported during 1995–2013 
could partly explain the increase [21]. A decrease in 
TBE cases was observed in Hungary over the years 
2012–2016, to our knowledge there is no explanation 
as to why. Trends at country level, such as these, may 
mask changes at local level as TBE endemicity is very 
focal and countries do not have a uniform risk across 
all territories/regions/counties etc. In Lithuania, which 
had the highest average annual notification rate, there 
was an eightfold difference between counties with 
highest and counties lowest TBE incidence. An analy-
sis of epidemiological patterns of TBE in Lithuania 
suggested different trends across counties with more 
pronounced increases in eastern and northern parts 

Figure 3
Number of reported tick-borne encephalitis cases by week of onset and 52-week moving average, 12 European Union and 
European Economic Area countries, 2012–2016
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of the country [22]. Similarly, diverging trends across 
regions were reported in Austria [23]. Decreasing trend 
were observed in north-east of Lower Austria whilst 
the alpine regions in the west of Austria became highly 
endemic.

Independently of what happens in animal reservoirs, 
we can classify factors driving TBE incidence in three 

groups: (i) tick abundance, (ii) population at risk, (iii) 
surveillance characteristics. Factors related to tick 
abundance are multiple (e.g. land, weather, reservoirs 
etc.) and can be very focal. The impact of climate change 
is debated with possibly different effects in different 
settings. A study carried out in Sweden suggested that 
milder winters were associated with increased TBE 
incidence in the mid-1980s [24]. Yet, a general circu-
lation model predicted that TBE transmission could be 
disrupted by climate change with a contraction of TBE 
areas to higher altitudes in central Europe and north-
ern latitudes in Scandinavia [25]. This would result in 
a decreased incidence in the coming decades but such 
change would probably not be captured over a 5–year 
period. Changes in human behaviour (e.g. increase of 
at-risk outdoor recreational activities) can put peo-
ple at greater risk of exposure to ticks and thus TBE. 
However, with increased vaccine coverage such risk 
could be improved. Finally, better clinical awareness, 
testing and reporting would improve the ability of the 
surveillance system to detect cases.

The geographical granularity of our data (at best 
NUTS3) does not allow fine monitoring of TBE foci, 
which countries are best placed to perform. However, 
during the first effort to collect TBE data at the EU/EEA 
level most of the recommendations were followed [11]. 
We implemented standard EU case definition for TBE 
and initiated routine collection of surveillance data 
from EU/EEA countries, to at least NUTS-3 geographi-
cal level for most of the countries. ECDC encourages all 
countries to report their cases at subnational level.

The reported TBE cases followed a pronounced sea-
sonality with most cases occurring during the warmer 
months May–October, which is likely due to human 
habits with people spending a greater amount of time 
outdoors in areas e.g. forests where ticks populations 
are high [1]. Cases infected during colder months are 
possible, however, especially in central Europe.

Cases of TBE are more common in older age groups, 
with the highest number of cases occurring in those 
aged 40-69 years. The highest notification rate, in 
those aged 60-69 years, most likely reflects high expo-
sure to tick populations at an age where individuals 
have increased time for outdoor recreational activity, 
but also fall into the known higher severity seen in 
older age groups [26].

Almost 95% (7,672/8,081) of reported TBE cases were 
admitted to hospital, which is not unexpected given 
that the clinical criteria used in the case definition 
selects severe cases. Even though the overall case 
fatality was relatively low, it was far from negligible in 
older age groups at ca 2–3% above 70 years of age. 
Previous reviews suggested that a third of patients 
could suffer long-lasting sequelae [1]. Our analysis 
found a much lower proportion but it is likely that our 
data could not capture long-term sequelae that would 

Table 2
Main characteristics of reported cases of tick-borne 
encephalitis, European Union and European Economic 
Area countries, 2012−2016 (n = 12,500)

Characteristics Number of 
cases Percent

Notification rate 
per 100,000 

persons
Total 12,500 100 0.54
Age group (years)
< 20 1,402 11.2 0.29
20–29 1,257 10.1 0.44
30–39 1,575 12.6 0.50
40–49 2,200 17.6 0.65
50–59 2,474 19.8 0.77
60–69 2,108 16.9 0.80
70–79 1,183 9.5 0.63
≥ 80 271 2.2 0.23
Unknown 30 NA NA
Sex
Female 5,118 40.9 0.43
Male 7,381 59.1 0.65
Unknown 1 NA NA
Importation status
Imported 156 1.3 NA
Locally-acquired 11,507 98.7 NA
Unknown 837 NA NA
Hospitalisation
Yes 7,672 94.9 NA
No 409 5.1 NA
Unknown 4,419 NA NA
Outcome
Alive 9,594 97.0 NA
Dead 48 0.5 NA
Neurological 
complications 247 2.5 NA

Unknown 2,611 NA NA
Vaccination status
Four doses 24 0.5 NA
Three doses 36 0.7 NA
Two doses 27 0.5
One dose 33 0.6 NA
Vaccinated unknown 
doses 19 0.4 NA

Not vaccinated 5,066 97.3 NA
Unknown 7,295 NA NA

NA: not available.



58 www.eurosurveillance.org

be diagnosed later in time from acute infection and 
thus not reported.

Vaccination remains the most effective protective 
measure against TBE [27]. However, studies have 
reported vaccine failures, especially in older age 
groups [28]. We found that 87/5,205 (1.7%) of cases 
were supposedly vaccinated (at least two doses of vac-
cine), mostly in extreme age groups. This would be in 
line with results from studies suggesting that age and 
number of vaccine doses were the most important fac-
tors determining the immunological response to vac-
cination [29]. The extended period between doses 
may mean that people are less likely to comply to the 
recommendations as shown in Germany where com-
pliance after the first dose was low [30]. Another rea-
son for not receiving or completing TBE vaccination is 
cost. TBE vaccination is not reimbursed in most EU/EEA 
countries and the willingness to pay for vaccination 
may not be sufficient to ensure uptake in residents or 
visitors frequenting areas considered high risk for tick 
populations and TBE [31]. A survey published in 2008, 
reported that Austria, Finland, Germany, Hungary, 
Latvia and Slovenia included TBE in their routine vac-
cination programme at least for some specific groups 
or areas [32].

In this study, we only found a few TBE cases in inter-
national travellers. Cases that are resident in countries 
with little or no risk of TBE are less likely to be vacci-
nated or diagnosed [33]. Increased awareness of TBE 
is required to improve vaccination coverage in travel-
lers and promote the best practices to avoid tick bites. 
Currently, the WHO recommends vaccination of travel-
lers who are at risk of TBE exposure during outdoors 
activities in rural endemic areas during the period of 
transmission [34].

Conclusion
The overall TBE notification rate remained stable dur-
ing 2012–2016. Surveillance at EU/EEA level helped 
provide reliable and comparative data allowing better 
mapping of the disease risk both at the national and 
subnational level. Countries with regions where the 
disease is highly endemic should consider strength-
ening information campaigns on preventive measures 
against tick bites as well as introducing TBE vaccine 
recommendations if these are not already proposed. 
ECDC encourages countries to report better quality and 
more complete data on TBE diagnoses, particularly 
on the sub-national geographic distribution and on 
imported cases.
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